SKM 150 MLI 066 T

SEMITRANS[®] 5

Trench IGBT Modules

SKM 150 MLI 066 T

Target Data

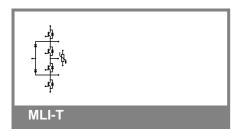
Features

- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

Typical Applications

- UPS
- 3 Level Inverter

Remarks


Case temperature limited to T_c
 =125°C max, recommended T_{op}
 = -40..+150°C

Symbol	Conditions		Values	Units
IGBT				
V_{CES}	T _j = 25 °C		600	V
I _C	T _j = 175 °C	T _c = 25 °C	200	Α
		$T_c = 80 ^{\circ}C$	150	Α
I _{CRM}	I _{CRM} =2xI _{Cnom}		300	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 360 V; $V_{GE} \le 15$ V; $V_{CES} < 600$ V	T _j = 150 °C	6	μs
Inverse [Diode		1	
I_{F}	T _j = 150 °C	T_c = 25 °C	200	Α
		$T_c = 80 ^{\circ}C$	145	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	Α
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	1080	А
Freewhe	eling Diode			
I _F	T _j = 150 °C	$T_c = 25 ^{\circ}C$	200	Α
		$T_c = 80 ^{\circ}C$	145	Α
I _{FRM}	I _{FRM} =2xI _{Fnom}		300	А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	1080	А
Module				
$I_{t(RMS)}$			500	Α
T _{vj}			- 40 + 175	°C
T _{stg}			- 40 + 125	°C
V _{isol}	AC, 1 min.		2500	V
	ı		•	L
Characte	eristics	T _{case}	= 25°C, unless otherwise	specified

Absolute Maximum Ratings

T_{case} = 25°C, unless otherwise specified

Characteristics T _{case}		T _{case} =	= 25°C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 2.4$ mA		5	5,8	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,0076	mA
I_{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = 20 \text{ V}$	T _j = 25 °C			600	nA
V_{CE0}		T _j = 25 °C		0,9	1	V
		T _j = 150 °C		0,85	0,9	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		3,6	6	mΩ
		$T_{j} = 150^{\circ}C$		5,4	7,6	$m\Omega$
V _{CE(sat)}	I _{Cnom} = 150 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,45	1,9	V
		$T_j = 150^{\circ}C_{chiplev}$		1,7	2,1	V
C _{ies}				9,2		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,57		nF
C _{res}				0,27		nF
R_{Gint}	T _j = °C			2		Ω
t _{d(on)}						ns
t _r	$R_{Gon} = 2 \Omega$	V _{CC} = 300V				ns
E _{on}	D = 4.0	I _C = 150A		0,7		mJ
t _{d(off)}	$R_{Goff} = 4 \Omega$	$T_j = 150 ^{\circ}\text{C}$ $V_{GF} = -8\text{V}/+15\text{V}$				ns ns
t _f E _{off}		GE = -50/113V		4,7		mJ
R _{th(j-c)}	per IGBT			0,29		K/W

SKM 150 MLI 066 T

Trench IGBT Modules

SKM 150 MLI 066 T

Target Data

Features

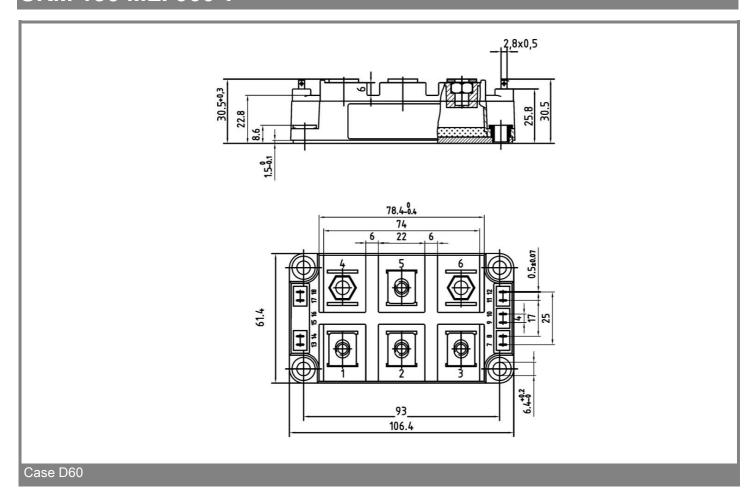
- · Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- Integrated NTC temperature sensor

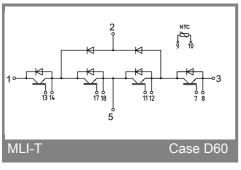
Typical Applications

- UPS
- 3 Level Inverter

Remarks

 Case temperature limited to T_c =125°C max, recommended T_{op} = -40..+150°C


$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Characteristics							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol	Conditions	l	min.	typ.	max.	Units	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$		1,35	1,6	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		1,35	1,6	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{F0}				1	1,1	٧	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 150 °C		0,9	1	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r _F				2,3	3,3	mΩ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 150 °C		3	4	mΩ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I _F = 150 A	T _j = 150 °C					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{rr}	$V_{GE} = -8 \text{ V}; V_{CC} = 300 \text{ V}$					mJ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{th(j-c)D}$	per diode			0,52		K/W	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Free-whe							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_F = V_{EC}$	I_{Fnom} = 150 A; V_{GE} = 0 V			1,35	1,6	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			$T_j = 150 ^{\circ}C_{\text{chiplev.}}$		1,35	1,6	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{F0}				1	1,1	٧	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 150 °C		0,9	1	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	r _F				2,3	3,3	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			T _j = 150 °C		3	4	V	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		I _F = 150 A	T _j = 150 °C					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E _{rr}	$V_{GE} = 0 \text{ V}; V_{CC} = 600 \text{ V}$					mJ	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$R_{th(j-c)FD}$	per diode			0,52		K/W	
$^{\text{V}}$ 310 g Temperature sensor $^{\text{R}}_{100}$ $^{\text{T}}_{\text{s}}$ =100°C ($^{\text{R}}_{25}$ =5kΩ) 493±5% $^{\text{Ω}}$	M_s	to heat sink M6		3		5	Nm	
Temperature sensor R_{100} T_s =100°C (R_{25} =5kΩ) 493±5% Ω	M _t	to terminals M6		2,5		5	Nm	
R_{100} T_s =100°C (R_{25} =5kΩ) 493±5% Ω	w					310	g	
R_{100} T_s =100°C (R_{25} =5kΩ) 493±5% Ω	Tempera	ture sensor						
K	-				493±5%		Ω	
							K	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SKM 150 MLI 066 T

