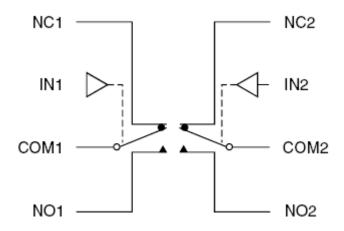


0.5 OHM, DUAL SPDT ANALOG SWITCH

IDTAS4684

Description

The IDTAS4684 low on-resistance (RON), low voltage, dual single-pole/double-throw (SPDT) analog switch operates from a single +1.8 V to +5.5 V supply. The IDTAS4684 features a 0.5Ω (max) RON for its NC switch and a 0.8Ω (max) RON for its NO switch at a +2.7 V supply. It also features break-before-make switching action (2 ns) with $t_{\mbox{ON}}$ = 50 ns and $t_{\mbox{OFF}}$ = 40 ns at +3 V. The digital logic inputs are 1.8 V logic-compatible with a +2.7 V to +3.3 V supply. Comes in a 12-bump CSP package.


Applications

- · Speaker headset switching
- MP3 players
- Battery-operated equipment
- · Audio and video signal routing
- PCMCIA cards
- Cellular phones
- Modems

Features

- +1.8 V to +5.5 V single-supply operation
- · Rail-to-rail signal handling
- 1.8 V logic compatibility
- Ron match between channels: 0.06Ω (max)
- Ron flatness over signal range: 0.15Ω (max)
- NCx Switch Ron: 0.5Ω max (+2.7 V Supply)
- NOx Switch Ron: 0.8Ω max (+2.7 V Supply)
- Low crosstalk: -68dB (100 kHz)
- High Off-isolation: -64dB (100 kHz)
- THD: 0.03%
- 50 nA (max) supply current
- Low leakage currents: 1 nA (max) at TA = +25°C
- 12-bump, 0.5 mm-Pitch UCSP package

Block Diagram

Pin Assignment (CSP)

	Α	В	С
1	NC1	GND	NC2
2	IN1	NC	IN2
3	сом1	NC	COM2
4	NO1	V+	NO2

Truth Table

IN	NO	NC
0	OFF	ON
1	ON	OFF

Note: Switches shown for logic "0" input.

Pin Descriptions

Pin Numbers	Pin Name	Pin Description
A1	NC1	Analog switch. Normally closed terminal 1.
A2	IN1	Digital control input 1.
A3	COM1	Analog switch. Common terminal 1.
A4	NO1	Analog switch. Normally open terminal 1.
B1	GND	Ground.
B2	NC	No connect.
В3	NC	No connect.
B4	V+	Positive supply voltage input.
C1	NC2	Analog switch. Normally closed terminal 2.
C2	IN2	Digital control input 2.
C3	COM2	Analog switch. Common terminal 2.
C4	NO2	Analog switch. Normally open terminal 2.

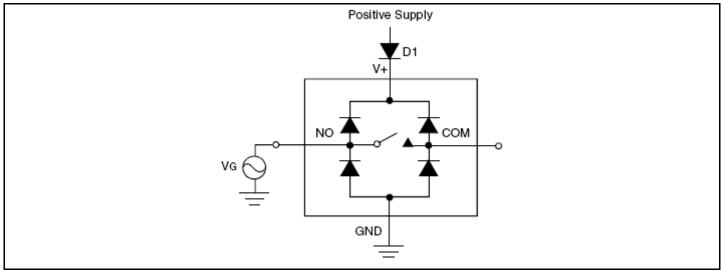
Absolute Maximum Ratings

Stresses above the ratings listed below can cause permanent damage to the IDTAS4684. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. All voltages referenced to ground.

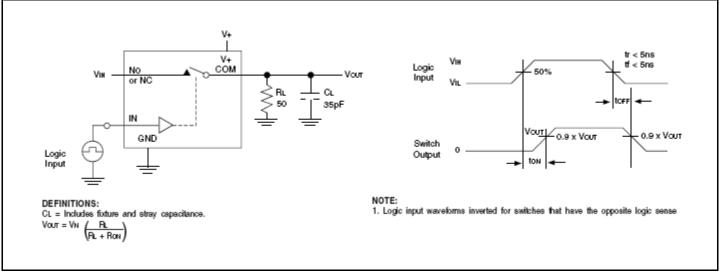
Symbol	Rating	Min	Max	Unit
V+, IN		-0.3	+6	V
COM, NO, NC		-0.3	(V+ + 0.3)	V
	Continuous current		±300	
NO, NC, COM	Peak current (pulsed at 1ms, 50% duty cycle)		±400	mA
	Peak current (pulsed at 1ms, 10% duty cycle)		±500	
	Continuous power dissipation (TA = +70°C) and 12-bump UCSP (derate 11.4mW/°C above +70°C)		+909	mW
	Operating temperature range	0	+70	°C
TSTG	Storage temperature range	-65	+150	°C
	Lead temperature (soldering, 10s)		+300	°C
	Bump temperature (soldering, infrared, 15s)		+200	°C
	Vapor phase (60s)		+215	°C

Electrical Characteristics

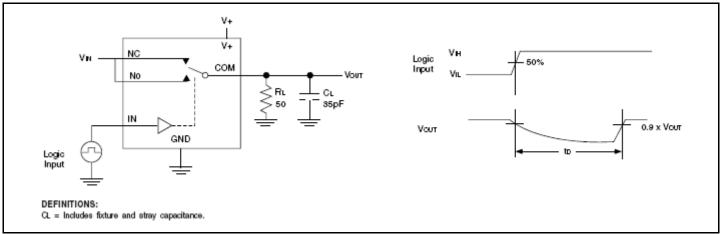
Unless stated otherwise, $V_{+} = 2.7 \text{ V}$ to 3.3 V, $V_{IH} = 1.4 \text{ V}$, $V_{IL} = 0.5 \text{ V}$, $T_{A} = T_{MIN}$ to T_{MAX} . Typical values are at +3 V and 25°C

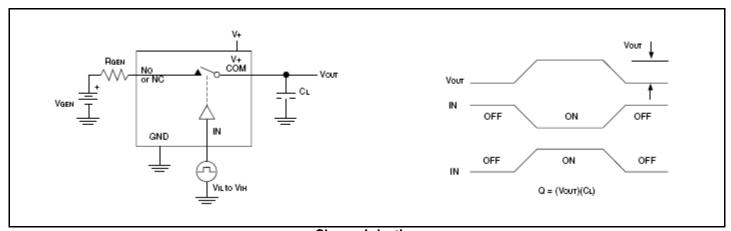

Parameter	Symbol	Conditions	T _A	Min.	Тур.	Max.	Units
Analog Switch							
Analog Signal Range	V_{NO}, V_{NC}, V_{COM}		T _{MIN to} T _{MAX}	0		V+	V
NC On-Resistance	R _{ON(NC)}	V+ = 2.7 V, I _{COM} = 100 mA,	+25°C		3.0	0.5	Ω
		$V_{NC} = 0$ to V+; Note 3	T _{MIN to} T _{MAX}			0.5	
NO On-Resistance	R _{ON(NO)}	V+ = 2.7 V, I _{COM} = 100 mA,	+25°C		0.45	0.8	Ω
		$V_{NO} = 0$ to V+; Note 3	T _{MIN to} T _{MAX}			0.8	=
On-Resistance Match	$\triangle R_{ON}$	V+ = 2.7 V, I _{COM} = 100 mA,	+25°C		0	0.6	Ω
between channels		V_{NO} or V_{NC} = 1.5 V; Notes 3, 4	T _{MIN to} T _{MAX}			0.6	=
NC On-Resistance Flatness	R _{FLAT(NC)}	$V+ = 2.7 \text{ V, } I_{COM} = 100 \text{ mA},$ $V_{NC} = 0 \text{ to } V+; \text{ Note 5}$	T _{MIN to} T _{MAX}			0.15	Ω
NO On-Resistance Flatness	R _{FLAT(NO)}	$V+ = 2.7 \text{ V, } I_{COM} = 100 \text{ mA},$ $V_{NO} = 0 \text{ to } V+; \text{ Note 5}$	T _{MIN to} T _{MAX}			0.35	Ω
NO or NC Off-leakage Current	I _{NO} (OFF) or	$V+ = 3.3 \text{ V}, V_{NO} \text{ or } V_{NC} = 3 \text{ V}, 0.3 \text{ V}$	+25°C	-1		+1	nA
	I _{NC} (OFF)	$V_{COM} = 0.3 \text{ V}, 3 \text{ V}$	T _{MIN to} T _{MAX}	-10		+10	
COM On-leakage Current	I _{COM} (ON)	$V + = 3.3 \text{ V}, V_{NO} \text{ or } V_{NC} = 3 \text{ V}, 0.3$	+25°C	-2		+2	nA
		V, or floating V _{COM} = 0.3 V, 3 V, or floating	T _{MIN to} T _{MAX}	-20		+20	
		Dynamic Characteristics	,				·
Turn-on Time	t _{ON}	$V+ = 2.7 \text{ V}, V_{NO} \text{ or } V_{NC} = 1.5 \text{ V}, R_L$	+25°C		30	50	ns
		= 50Ω C _L $= 35$ pF	T _{MIN to} T _{MAX}			60	ns
Turn-off Time	t _{OFF}	$V+ = 2.7 \text{ V}, V_{NO} \text{ or } V_{NC} = 1.5 \text{ V}, R_{L}$	+25°C		25	30	ns
		$= 50\Omega$ C _L = 35 pF	$T_{MIN to} T_{MAX}$			40	ns
Break-Before-Make-Delay	t _{BBM}	$V+ = 2.7 \text{ V}, V_{NO} \text{ or } V_{NC} = 1.5 \text{ V},$ $R_L = 50\Omega, C_L = 35 \text{ pF}$	T _{MIN to} T _{MAX}	2	15		ns
Charge Injection	Q	COM = 0, RS = 0, C _L = 1 nF	+25°C		200		рС
Off-Isolation	V _{ISO}	$C_L = 5 \text{ pF}; R_L = 50\Omega, f = 100 \text{ kHz}, V_{COM} = 1 V_{RMS}, Note 6$	+25°C		-64		dB
Crosstalk	V _{CT}	$f = 100 \text{ kHz}, R_L = 50\Omega, C_L = 5 \text{ pF},$ $V_{COM} = 1 V_{RMS}$	+25°C		-68		dB
Total Harmonic Distortion	THD	$R_L = 600\Omega$, IN = 2 V p-p, f = 20Hz to 20 kHz	+25°C		0.03		%
NC Off-Capacitance	C _{NC} (OFF)	f = 1 MHz	+25°C		84		pF
NC Off-Capacitance	C _{NO} (OFF)	f = 1 MHz	+25°C		37		pF
NC On-Capacitance	C _{NC} (ON)	f = 1 MHz	+25°C		190		pF
NC On-Capacitance	C _{NO} (ON)	f = 1 MHz	+25°C		150		pF

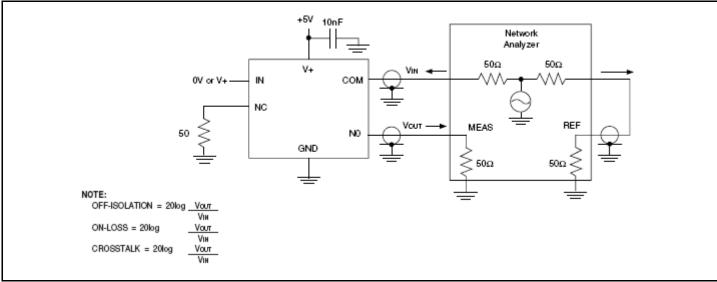
Parameter	Symbol	Conditions	T _A	Min.	Тур.	Max.	Units
		Digital I/O					
Input Logic HIGH	V _{IH}		T _{MIN to} T _{MAX}	1.4			V
Input Logic LOW	V _{IL}		$T_{MIN\;to}$ T_{MAX}			0.5	V
IN Input Leakage Current	I _{IN}	V _{IN} = 0 or V+	T _{MIN to} T _{MAX}	-1		1	μA
		Power Supply					
Power Supply Range	V+		T _{MIN to} T _{MAX}	1.8		5.5	V
Supply Current	I+	$V+ = 5.5 \text{ V}, V_{IN} = 0 \text{ or } V+,$	+25°C	-50	+0.04	+50	nA
		Note 3	T_{MINto} T_{MAX}	-200		+200	

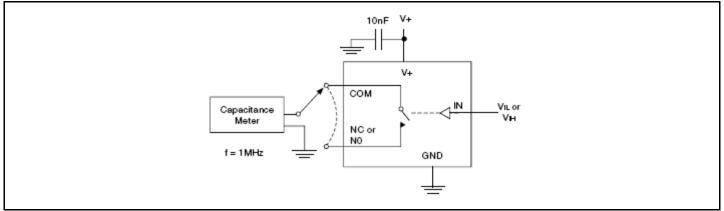

Notes:

- 1. The algebraic convention used in this data sheet is where the most negative value is a minimum and the most positive value a maximum.
- 2. UCSP parts are 100% tested at +25°C only and guaranteed by design and correlation at the full hot-rated temperature.
- 3. Guaranteed by design.
- 4. $\triangle R_{ON}$ = $R_{ON(MAX)}$ $R_{ON(MIN)}$, between NC1 and NC2 or between NO1 and NO2.
- 5. Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal ranges.
- 6. Off-isolation = 20log10 (V $_{COM}$ / V $_{CO}$), V $_{COM}$ = output, V $_{CO}$ = input to off switch.


Test Circuits and Timing Diagrams


Overvoltage Protection Using Two External Blocking Diodes


Switching Time

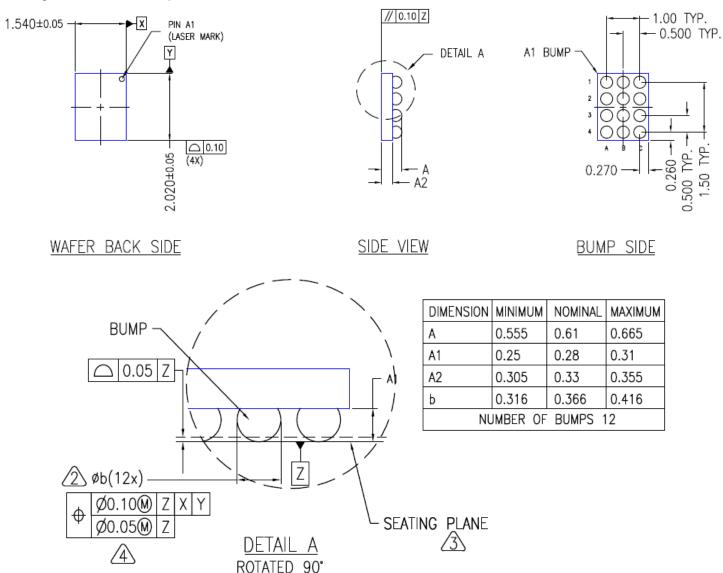

Break-Before-Make Interval

Charge Injection

On-Loss, Off-Isolation, and Crosstalk

Channel Off/On Capacitance

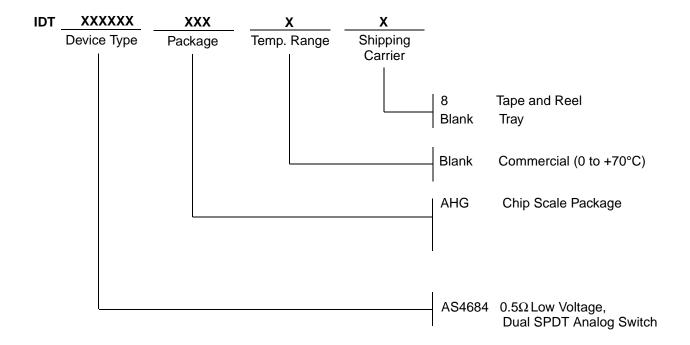
Marking Diagram (CSP)



Notes:

- 1. "Z" is the device step (1 to 2 characters).
- 2. YYWW is the last two digits of the year and week that the part was assembled.
- 3. "\$" is the assembly mark code.
- 4. "G" after the two-letter package code designates RoHS compliant package.
- 5. "I" at the end of part number indicates industrial temperature range.
- 6. Bottom marking: country of origin if not USA.

Package Outline and Package Dimensions (12-bump CSP)


Package dimensions are kept current with JESD Publication No. 95-1,

NOTES:

- 1. DIMENSIONS AND TOLERANCE PER ASME Y 14.5M 1994.
- 2. DIMENSION IS MEASURED AT THE MAXIMUM BUMP DIAMETER PARALLEL TO PRIMARY DATUM [7]
- 3. PRIMARY DATUM [Z] AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE BUMP.
- 4. BUMP POSITION DESIGNATION PER JESD 95-1, SPP-010.
- 5. THERE SHALL BE A MINIMUM CLEARANCE OF 0.10mm BETWEEN THE EDGE OF THE BUMP AND THE BODY EDGE.

Ordering Information

Revision History

Rev.	Originator	Date	Description of Change
В		10/31/06	Created datasheet in new template; added marking diagram.
С		11/15/06	Removed DFN package and ordering information.

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775 For Tech Support

408-284-4522 clockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. www.idt.com

