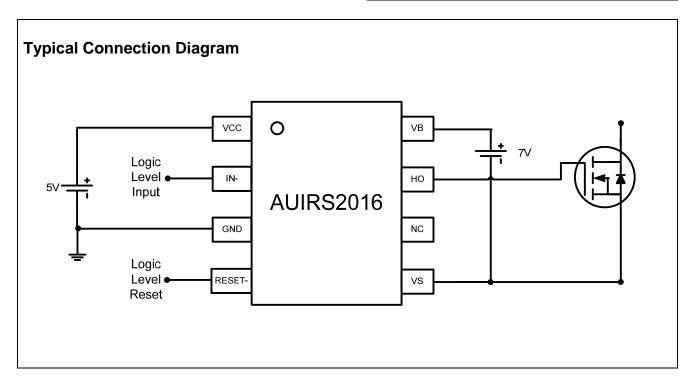
International TOR Rectifier

Automotive Grade AUIRS2016S(TR)

High Side Driver with Internal Vs Recharge

Features

- · Leadfree, RoHS compliant
- Automotive qualified*
- One high side output and internal low side Vs recharge.
- CMOS Schmitt trigger inverted input with pull up resistor
- CMOS Schmitt trigger inverted reset with pull down resistor
- 5V compatible logic level inputs
- Immune to –Vs spike and tolerant to dVs/dt


Typical Applications

• Common-rail magnetic valve application

Product Summar	y
Topology	Low side input, high side driver with Vs recharge
V _{OFFSET}	150 V
V _{OUT}	4.4 V – 20 V
I _{o+} & I _{o-} (typical)	0.25 A
t _{ON} & t _{OFF} (typical)	150 ns
Deadtime DT _{ON} / DT _{OFF} (typical)	70ns / 6 us

Package Options

^{*} Qualification standards can be found on IR's web site ww.irf.com

Table of Contents	Page			
Description	3			
Qualification Information	4			
Absolute Maximum Ratings	5			
Recommended Operating Conditions	6			
Electrical Characteristics	7			
Functional Block Diagram	11			
Input/Output Pin Equivalent Circuit Diagram	12			
Lead Definitions				
Lead Assignments				
Application Information and Additional Details	14			
Package Details	20			
Tape and Reel Details	21			
Part Marking Information				
Ordering Information	23			

International TOR Rectifier

AUIRS2016S(TR)

Description

The AUIRS2016 is a high voltage power MOSFET and IGBT high side driver with internal VS-to-GND recharge NMOS. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard 5V CMOS or LSTTL logic. The output driver features a 250mA high pulse current buffer stage. The channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration, which operates up to 150 volts above GND ground.

Qualification Information[†]

Qualification into	11110441011					
			Automotive (per AEC-Q100 ^{††})			
Qualification Level	qualification. IR's Industrial and Consun level is granted by extension of the hig level.		ustrial and Consumer qualification			
Moisture Sensitivity	/ Level	SOIC8 MSL3 ^{†††} 260°C (per IPC/JEDEC J-STD-020)				
	Machine Model	(pe	Class M1 r AEC-Q100-003)			
ESD	Human Body Model	Class H2 (per AEC-Q100-002)				
	Charged Device Model	Class C5 (per AEC-Q100-011)				
IC Latch-Up Test		Class II, Level A (per AEC-Q100-004)				
RoHS Compliant		V	Yes			

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Exceptions to AEC-Q100 requirements are noted in the qualification report.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to GND, all currents are defined positive into any lead.

An operation above the absolute maximum limit is not implied and could damage the part.

Symbol	Definition	Min.	Max.	Units
V _{BS}	High Side Floating Supply Voltage	-0.3	20	V
V _B	High Side Driver Output Stage Voltage, Neg. transient: 0.5 ms, external MOSFET off	-5.0	166	V
Vs	High Side Floating Supply Offset Voltage Neg. transient 0.4 μs	-8.0	150	V
VH₀	Output Voltage Gate Connection	$V_{S} - 0.3$	$V_B + 0.3$	V
V _{CC}	Supply Voltage	-0.3	20	V
V_{IN}	Input Voltage	-0.3	$V_{CC} + 0.3$	V
lin	Input Injection Current. Full function, no latch-up; (guaranteed by design). Test at 5V and 7V on Eng. Samples.		+1	mA
V_{RES}	Reset Input Voltage	-0.3	$V_{CC} + 0.3$	V
Vesd	Electrostatic Discharge Voltage(Human body model)	2k		V
Vсрм	Charge Device Model CDM, EOS/ESD Ass. Std 5.3. Number of discharges per pin: 6	2K		V
dV/dt	Allowable Offset Voltage Slew Rate	-50	50	V/nsec
T_J	Junction Temperature	-55	150	
T _S	Storage Temperature	-55	150	°C

Recommended Operating Conditions

For proper operations the device should be used within the recommended conditions.

Symbol	Definition	Min.	Max.	Units
V _B 1)	High Side Driver Output Stage Voltage	Vs+4.4	Vs+20	V
Vs	High Side Floating Supply Offset Voltage	-3	150	V
Vно	Output Voltage Gate	Vs	V_{B}	V
V _{CC}	Supply Voltage	4.4	6.5	V
VIN	Input Voltage	0	Vcc	V
V _{RES}	Reset Input Voltage	0	Vcc	V
Та	Ambient Temperature (VBS =14V_load: 50 Ohm 2.5nF	-40	125	°C
	into V _S)			
fs	Switching frequency 2)		200	kHz
t _{inlowmin}	Minimum low input width ³⁾	1000		ns
t _{inlhighin}	Minimum high input width ³⁾	60		ns

¹⁾ Reset-logic functional for VBS > 2V

²⁾ Duty cycle = 0.5, $V_{BS} = 7 \text{ V}$

³⁾ Guaranteed by design. Pulse width below the specified values may be ignored. Output will either follow the input or will ignore it. No false output state is guaranteed when minimum input width is smaller than $t_{\rm in}$.

Electrical Characteristics

Unless otherwise specified, VCC = 5V, VBS = 7V, VS = 0V, IN = 0V, RES = 5V, load R = 50Ω , C = 2.5nF. Unless otherwise noted, these specifications apply for an operating junction temperature range of -40°C \leq Tj \leq 125°C.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
VCC Supp	oly Characteristics					
VCCUV+	VCC Supply Undervoltage			4.3		VCC rising from 0V
	Positive Going Threshold				V	
VCCUV-	VCC Supply Undervoltage	2.8				Vcc dropping from 5V
	Negative Going Threshold					
VCCUVH	VCC Supply Undervoltage	0.02	0.3	0.60		
YS	Lockout Hysteresis					
tdUVCC	Undervoltage Lockout	0.5		20	μsec	VCC steps either from 6.5V to
	Response Time					2.7V or from 2.7V to 6.5V
IQCC	VCC Supply Current			400	uA	VCC = 3.6V & 6.5V
VBS Supp	oly Characteristics					
VBSUV+	VBS Supply Undervoltage			4.3		VBS rising from 0V
	Positive Going Threshold				V	
VBSUV-	VBS Supply Undervoltage	2.8				VBS dropping from 5V
	Negative Going Threshold					
VBSUVH	VBS Supply Undervoltage	0.02	0.3	0.60		
YS	Lockout Hysteresis					
tdUVBS	Undervoltage Lockout	0.5		20	μsec	VBS steps either from 6.5V to
	Response Time					2.7V or from 2.7V to 6.5V
IQBS1	VBS Supply Current			130	μΑ	static mode, VBS = 7V, IN = 0V
					·	or 5V
IQBS2	VBS Supply Current			200	μΑ	static mode, VBS = 16V, IN =
					-	0V or 5V
ΔVBS	VBS Drop Due to Output			210	mV	VBS = 7V, CBS = 1μ F, tdIG-IN
	Turn-On					= 3µsec, tTEST = 100µsec

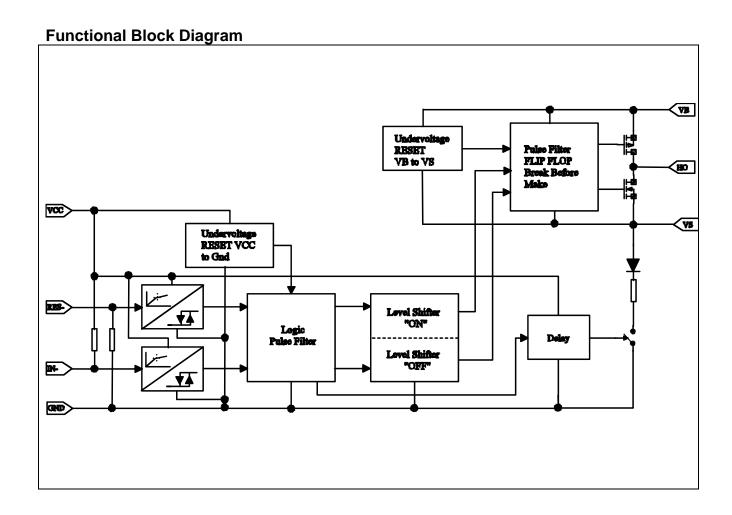
Electrical Characteristics

Unless otherwise specified, V_{CC} = 5V, V_{BS} = 7V, V_{S} = 0V, IN = 0V, RES = 5V, load R = 50 Ω , C = 2.5nF. Unless otherwise noted, these specifications apply for an operating junction temperature range of -40°C \leq Tj \leq 125°C.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Gate Drive	Characteristics					
IPKSo1	Peak Output Source Current	120	250		mA	Tj = 25°C, (Note 2)
IPKSo2	Peak Output Source Current	70	150		mA	(Note 2)
IPKSo3	Peak Output Source Current	250	500		mA	VBS = 16V, Tj = $25^{\circ}C^{\dagger\dagger}$
IPKSo4	Peak Output Source Current	150	300		mA	VBS = 16V ^{††}
IHO,off	HO off-state leakage current (guaranteed by design)			1	uA	
tr1	Output Rise Time		0.2	0.4	μsec	Tj = 25°C
tr2	Output Rise Time		0.3	0.5	μsec	
tr3	Output Rise Time		0.1	0.2	μsec	VBS = 16V, Tj = 25°C
tr4	Output Rise Time		0.15	0.3	μsec	VBS = 16V
IPKSi1	Peak Output Sink Current	120	250		mA	$IN = 5V$, $Tj = 25^{\circ}C^{\dagger\dagger}$
IPKSi2	Peak Output Sink Current	70	150		mA	IN = 5V, (Note 2)
IPKSi3	Peak Output Sink Current	250	500		mA	VBS = 16V, IN = 5V, Tj = 25°C, (Note 2)
IPKSi4	Peak Output Sink Current	150	300		mA	$VBS = 16V, IN = 5V^{\dagger\dagger}$
tf1	Output Fall Time		0.2	0.4	μsec	IN = 5V, Tj = 25°C
tf2	Output Fall Time		0.3	0.5	μsec	IN = 5V
tf3	Output Fall Time		0.1	0.2	μsec	VBS = 16V, IN = 5V, Tj = 25°C
tf4	Output Fall Time		0.15	0.3	μsec	VBS = 16V, IN = 5V

^{††} PW<10us

Electrical Characteristics

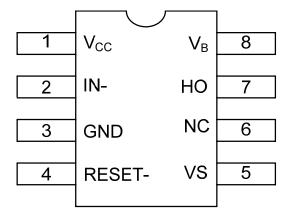

Unless otherwise specified, VCC = 5V, VBS = 7V, VS = 0V, IN = 0V, RES = 5V, load R = 50Ω , C = 2.5nF. Unless otherwise noted, these specifications apply for an operating junction temperature range of -40°C \leq Tj \leq 125°C.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{plh}	Input-to-Output Turn-On		0.15	0.35	μsec	
	Propagation Delay (50% input				·	
	level to 10% output level)					
t _{phl}	Input-to-Output Turn-Off		0.15	0.35	μsec	
	Propagation Delay (50% input				·	
	level to 90% output level)					
t _{phl_res}	RES-to-Output Turn-Off		0.15	0.35	μsec	
	Propagation Delay (50%				·	
	input level to 90% [t _{phl}]					
	output levels)					
t _{plh_res}	RES-to-Output Turn-On		0.15	0.35	μsec	
	Propagation Delay (50%				·	
	input level to 10% [t _{plh}]					
	output levels)					

Electrical Characteristics

Unless otherwise specified, VCC = 5V, VBS = 7V, VS = 0V, IN = 0V, RES = 5V, load R = 50Ω , C = 2.5nF. Unless otherwise noted, these specifications apply for an operating junction temperature range of -40° C \leq Tj \leq 125° C.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Input Cha	racteristics		_	_		
VINH	High Logic Level Input Threshold	0.6* Vcc			V	VCC=5V
VINL	Low Logic Level Input Threshold			0.28* Vcc	>	VCC=5V
RIN	High Logic Level Input Resistance	60	100	220	kΩ	
IIN	High Logic Level Input Current			5	μΑ	VIN=VCC
VH_RES	High Logic Level RES Input Threshold	3			V	VCC=5V
VL_RES	Low Logic Level RES Input Threshold			1.4	V	VCC=5V
RRES	High Logic Level RES Input Resistance	60	100	220	kΩ	
IRES	Low Logic Level Input Current			5	μΑ	VRES=0
Recharge	Characteristics					
ton_rech	Recharge Transistor Turn- On Propagation Delay	3	6	9	μsec	VS = 5V
toff_rech	Recharge Transistor Turn- Off Propagation Delay		0.08	0.2	μsec	
VRECH	Recharge Output Transistor On-State Voltage Drop			1.2	V	IS = 1mA, IN = 5V.
Deadtime	Characteristics					
DTHOFF	High Side Turn-Off to Recharge gate Turn-On	3	6	9	μsec	VCC = 5V, VBS = 7V
DTHON	Recharge gate Turn-Off to High Side Turn-On	0.01	0.07	0.4	μsec	VCC = 5V, VBS = 7V



Input/Output Pin Equivalent Circuit Diagrams νв 🖵 ESD Diode ESD Diode vcc 🗖 ESD Diode IN-, RESET-ESD Diode GND GND 🗀vcc 🖵 VB 🗀νв ロ-166V GND 🗀-GND 🗀-

Lead Definitions

Pin Number	Symbol	Pin description
1	VCC	Driver Supply, typically 5.0V
2	IN-	Driver Control Signal Input (negative logic)
3	GND	Ground
4	RESET-	Driver Enable Signal Input (negative logic)
5	VS	MOSFET Source Connection
6	NC	No Connection (no Bondwire)
7	НО	MOSFET Gate Connection
8	VB	Driver Output Stage Supply

Lead Assignments

8 Lead SOIC

Application Information and Additional Details

Å Truth table for V_{CC} , V_{BS} , RESET, IN, H_O and RechFET is shown as follows. This truth table is for ACTIVE LOW IN.

supply vol thresi		Signals		Output	Bookarga Bath
Vcc	VBS	RESET-	IN-	Но	Recharge Path
< V _{CCUV} -	X	Х	Х	OFF	ON
Х	X	LOW	Х	OFF	ON
Х	X	Х	HIGH	OFF	ON
> V _{CCUV+}	> VBS _{UV+}	HIGH	LOW	ON	OFF
> V _{CCUV+}	< VBS _{UV} -	HIGH	LOW	OFF	OFF

X means independent from signal

RESET = HIGH indicates that high side NMOS is allowed to be turned on.

RESET = LOW indicates that high side NMOS is OFF.

IN = LOW indicates that high side NMOS is on.

IN = HIGH indicates that high side NMOS is off.

RechFET = ON indicates that the recharge MOSFET is on.

RechFET = OFF indicates that the recharge MOSFET is off.

Timing Diagrams

Input / Output

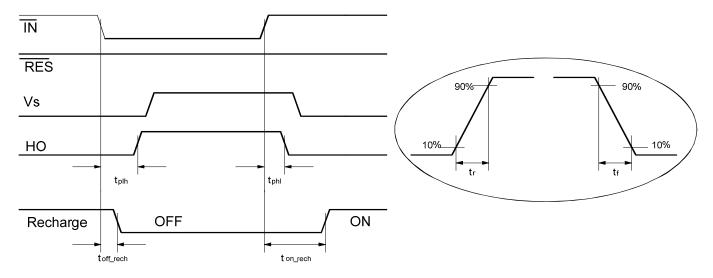


Figure 3: Input/Output Timing Diagram

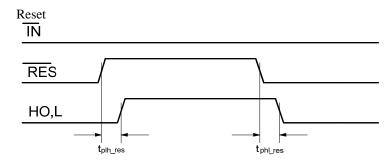


Figure 4: Reset Timing Diagram

Performance Graphs

RESET Functionality Graph:

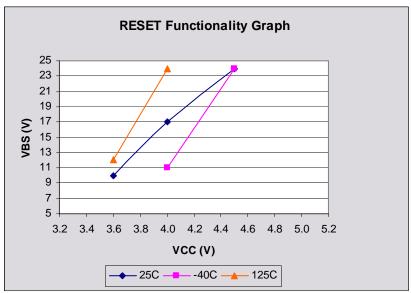
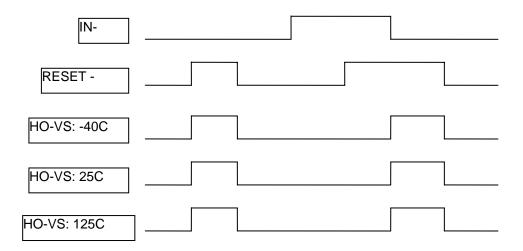



Figure 6. RESET Functionality:

This graph explains the functionality limitation as a function of VCC, VBS and temperature. For each particular temperature and VCC, the output is non-functional for any value of VBS above the drawn curve. But for any value of VBS below the curve the functionality is fine.

RESET Functional Diagram:

The diagram is guaranteed for the following condition: VCC=4.28V to 20V; VBS= 2V to 20V @ Tj= -40°C to +125°C (TBD)

Input and Reset Thresholds:

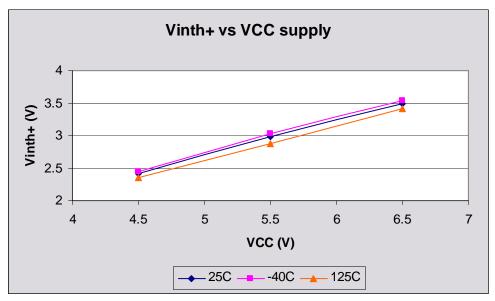


Figure 7-1: Positive Input and Reset Threshold Voltage Distribution Curves

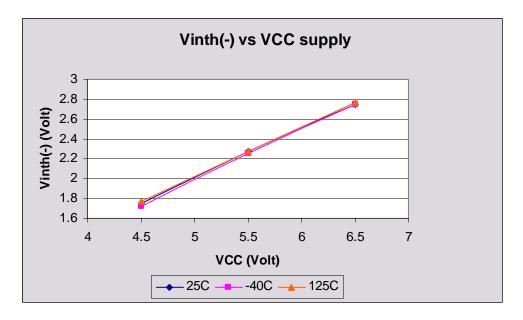


Figure 7-2: Negative Input and Reset Threshold Voltage Distribution Curves

www.irf.com © 2008 International Rectifier

VB_{UV} Undervoltage Shutdown Threshold VB: TBD

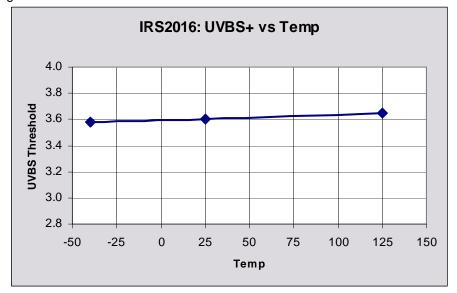


Figure 8-1: Positive going VB_{UV} value vs. Temperature: TBD

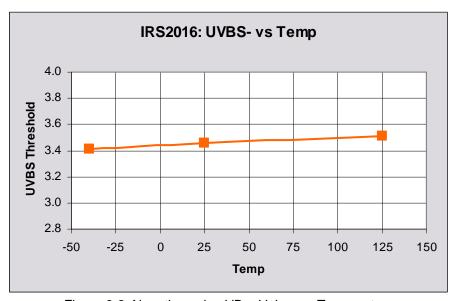


Figure 8-2: Negative going VB_{UV} Value vs. Temperature

Input and Reset Impedance

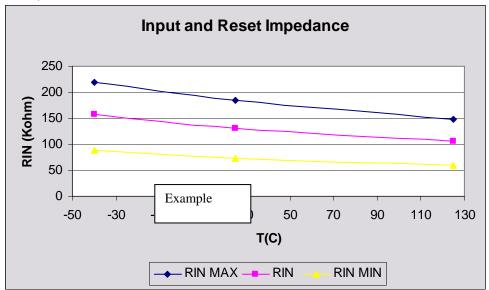


Figure 9: Input and Reset Impedance Distribution Curves

Recharge FET I-V Curve at -40C, 25C and 125C

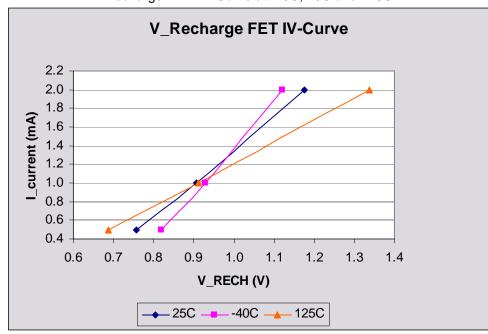
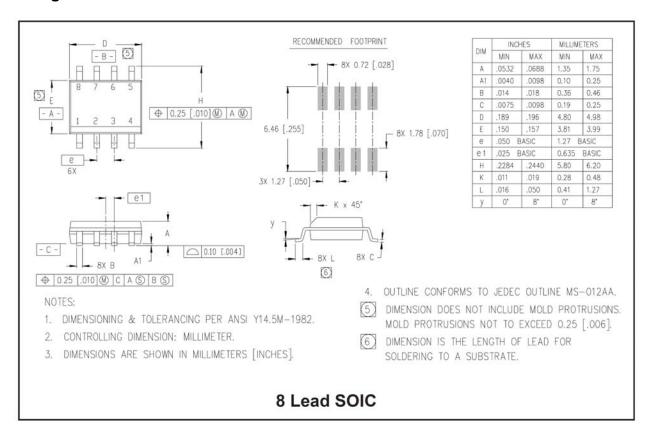
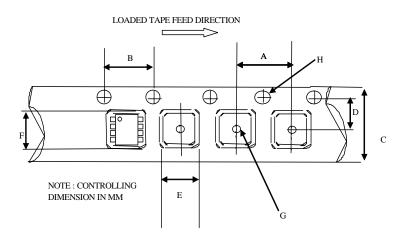
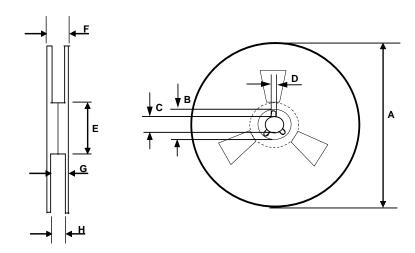




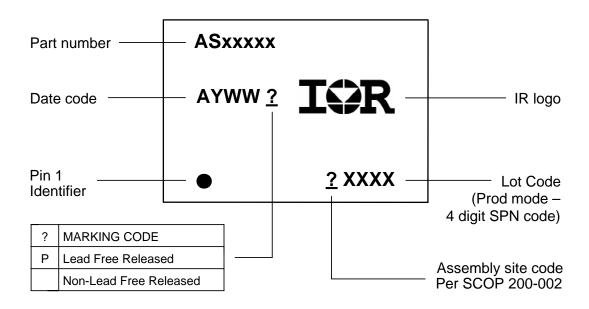
Figure 10: Recharge FET IV-Curve

Package Details: SOIC8



Tape and Reel Details: SOIC8

CARRIER TAPE DIMENSION FOR 8SOICN


	Me	etric	Imp	erial
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

	Metric		Imperial	
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

International

TOR Rectifier

AUIRS2016S(TR)

Ordering Information

Base Part Number	Package Type	Standard Pack		Occupated Boot Newsland
		Form	Quantity	Complete Part Number
AUIRS2016S(TR)	SOIC8	Tube/Bulk	95	AUIRS2016S
		Tape and Reel	2500	AUIRS2016STR

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105