

- Ideal for 319.50 MHz Transmitters
- Very Low Insertion Loss
- Quartz Stability
- Ultra Miniature Ceramic SMD Package (QCC4A)

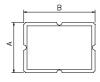
SR5420

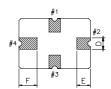
Absolute Maximum Rating (Ta=25°C)							
Parameter		Rating	Unit				
CW RF Power Dissipation	Р	0	dBm				
DC Voltage	$V_{ m DC}$	±30	V				
Operating Temperature Range	T _A	-10 ~ +60	°C				
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	°C				

Electronic Characteristics						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	f _c	NS	319.50	NS	MHz
	Tolerance from 319.50 MHz	Δf_c	-	-	± 75	KHz
Insertion Loss		IL	-	1.3	1.8	dB
Quality Factor	Unloaded Q-Value	Qu	-	11,240	-	-
	50Ω Loaded Q-Value	Q_L	-	1,550	-	-
Temperature Stability	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	f _o	-	f_c	-	KHz
	Frequency Temperature Coefficient	FTC	-	0.032	-	ppm/°C2
Frequency Aging	Absolute Value during the First Year	$ f_A $	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ
RF Equivalent RLC Model	Motional Resistance	R _M	-	16.0	23.0	Ω
	Motional Inductance	L _M	-	89.6106	-	μН
	Motional Capacitance	$C_{\scriptscriptstyle M}$	-	2.7719	-	fF
	Shunt Static Capacitance	Co	2.9	3.1	3.3	pF

NS = Not Specified

Note:


- The frequency f_c is the frequency of minimum IL with the resonator in the specified test fixture in a 50Ω test system with VSWR ≤ 1.2:1.
- 2. Unless noted otherwise, case temperature TC = +25°C±2°C.
- 3. Frequency aging is the change in fC with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T0, is the temperature of maximum (or turnover) frequency, f0. The nominal frequency at any case temperature, TC, may be calculated from: f = f₀ [1 - FTC (T₀ - T_C)²].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (nonmotional) capacitance between input terminal and ground or output terminal and ground.


- The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_c, IL, 3 dB bandwidth, f_C versus T_C, and Co.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery, please contact our sales offices or e-mail to sales@vanlong.com.

Phone: +86 10 6301 4184 Fax: +86 10 6301 9167 Email: sales@vanlong.com Web: http://www.vanlong.com

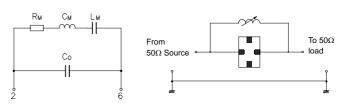
Package Dimensions (QCC4A)

Electrical Connections

Terminals	Connection
1	Terminal 1
3	Terminal 2
2,4	Case-Ground

Package Dimensions

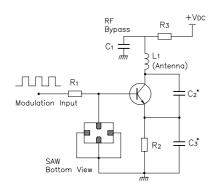
Dimensions	Nom (mm)	Dimensions	Nom (mm)
Α	3.5	D	0.5
В	5.0	Е	0.8
С	1.4	F	1.2


Marking

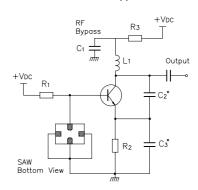
- 1. R5420 Part Code
- 2. Frequency in MHz
- B. Date Code:

Y: Last digit of year WW: Week No.

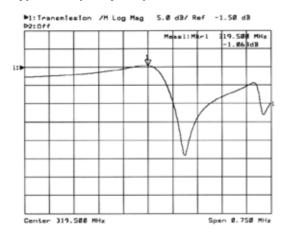
Equivalent LC Model and Test Circuit

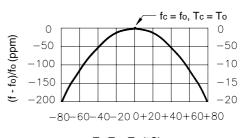


Equivalent LC Model


Typical Test Circiut

Typical Application Circuit


Low Power Transmitter Application


Local Oscillator Application

Typical Frequency Response

Temperature Characteristics

 $\Delta T = Tc - To (°C)$

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Phone: +86 10 6301 4184

Fax: +86 10 6301 9167

Email: sales@vanlong.com

Web: http://www.vanlong.com