

M62366GP

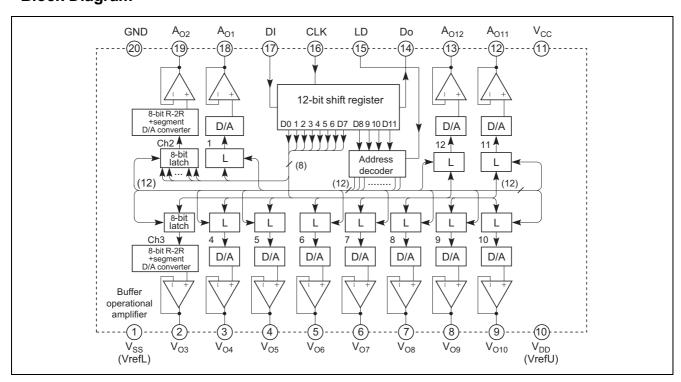
3 V Type 8-bit 12ch D/A Converter with Buffer Amplifiers

REJ03D0876-0300 Rev.3.00 Mar 25, 2008

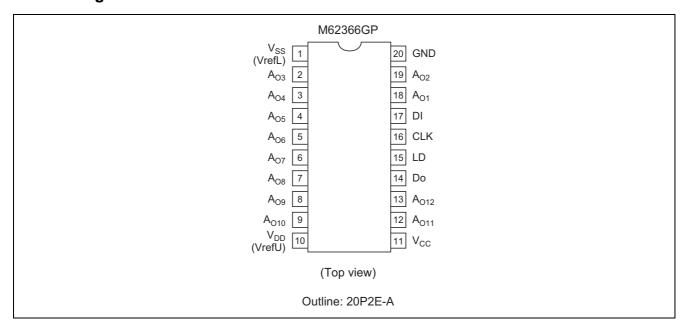
Description

The M62366GP is a CMOS semiconductor IC, containing 12 channels of 8-bit D/A converters, with a high-performance buffer operational amplifier provided in the output of each channel. It is operable with a low supply voltage between 2.7 to 3.6 V, and is easy to use due to serial data input, and 3-pin (DI, CLK, LD) connection with microcomputer.

The IC also contains D_0 pin terminal, enabling cascade connection. The built-in buffer operational amplifiers are of full-swing design with a wide operating supply voltage range for input/output voltage. In addition, this IC provides improved stability against a capacitive load, and therefore is suitable for application to electronic volume (VCA) control, substitute for adjustment semi-fixed resistor, etc.

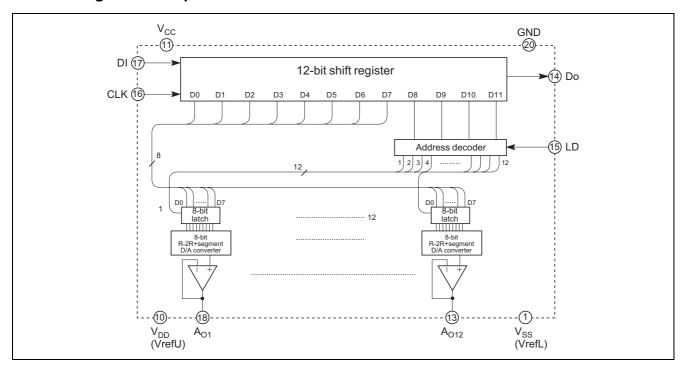

Features

- Operable with a low voltage between 2.7 to 3.6 V
- 12-bit serial data input (connected via 3 pins: DI, CLK, LD)
- 12 channels of R-2R and segment type high-performance 8-bit D/A converters
- 12 buffer operational amplifiers with full swing of output voltage between V_{CC} and GND
- High oscillation stability against the capacitive load of buffer operational amplifiers


Application

Adjustment/control of industrial or home-use electric equipment, such as VTR camera, VTR set, TV, and CRT display.

Block Diagram


Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
17	DI	Serial data input terminal to input 12-bit long serial data
14	Do	Terminal to output MSB data of 12-bit shift register
16	CLK	Shift clock input terminal. Input signal at DI pin is input to 12-bit shift register at rise of shift clock pulse
15	LD	When H-level signal is input to this terminal, the value stored in 12-bit shift register is loaded in decoder and D/A converter output register.
18	A _{O1}	8-bit D/A converter output terminal
19	A _{O2}	
2	A _{O3}	
3	A _{O4}	
4	A _{O5}	
5	A ₀₆	
6	A ₀₇	
7	A _{O8}	
8	A _{O9}	
9	A _{O10}	
12	A _{O11}	
13	A _{O12}	
11	V _{CC}	Power supply terminal
20	GND	GND terminal
10	V_{DD}	D/A converter upper reference voltage input terminal
1	V _{SS}	D/A converter lower reference voltage input terminal

Block Diagram for Explanation of Terminals

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	-0.3 to +7.0	V
Upper reference voltage of D/A converter	V_{DD}	-0.3 to +7.0	V
Input voltage	V _{IN}	-0.3 to V _{CC} + 0.3	V
Output voltage	Vo	-0.3 to V _{CC} + 0.3	V
Power dissipation	Pd	150	mW
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	−40 ~ +125	°C

Electrical Characteristics

<Digital Part>

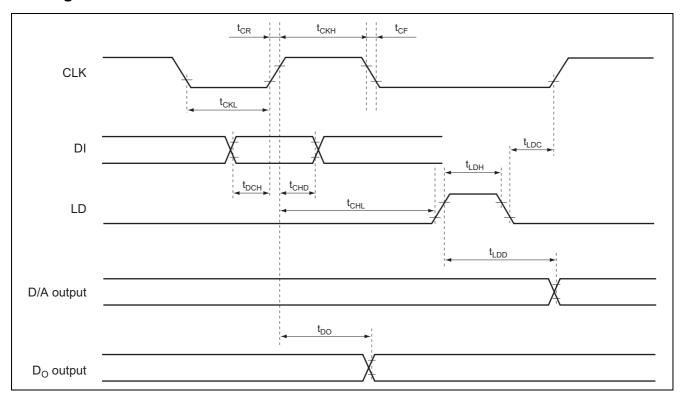
 $(V_{CC}, VrefU = +3 \ V \pm 10\%, V_{CC} \geq VrefU, GND, VrefL = 0 \ V, Ta = -20 \ to \ +85^{\circ}C, unless \ otherwise \ noted.)$

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	V _{CC}	2.7	3.0	3.6	V	
Circuit current	Icc	_	1.5	3.5	mA	CLK = 1 MHz operation,
						$V_{CC} = 3 \text{ V}, I_{AO} = 0 \mu\text{A}$
Input leak current	I _{ILK}	-10	_	10	μΑ	$V_{IN} = 0$ to V_{CC}
Input low voltage	V _{IL}	_	_	0.2 V _{CC}	V	
Input high voltage	V _{IH}	0.8 V _{CC}	_	_	V	
Output low voltage	V _{OL}	_	_	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	V _{CC} - 0.4	_	_	V	I _{OH} = -400 μA

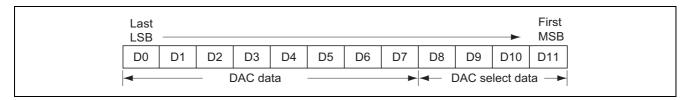
Note: The standard values are obtained at $Ta = 25^{\circ}C$

<Analog Part>

(V_{CC}, VrefU = +3 V \pm 10%, V_{CC} \geq VrefU, Ta = -20 to +85°C, unless otherwise noted.)


		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
Current dissipation	IrefU	_	1.4	2.5	mA	VrefU = 3 V, VrefL = 0 V
						Data condition: at maximum current
D/A converter upper	VrefU	0.7 V _{CC}	_	V _{CC}	V	Reference voltage cannot always
reference voltage range						be set to any value in this range,
D/A converter lower	VrefL	GND	_	0.3 V _{CC}	V	because it is restricted to the buffer
reference voltage range						amplifier output voltage range.
Buffer amplifier output	V_{AO}	0.1	_	V _{CC} - 0.1	V	$I_{AO} = \pm 100 \mu A$
driver voltage range		0.2	_	V _{CC} - 0.2	V	I _{AO} = +500 μA
						–200 μΑ
Buffer amplifier output	I _{AO}	-0.3	_	1	mΑ	Upper saturation voltage = 0.4 V
voltage range						Lower saturation voltage = 0.4 V
Differential nonlinearity	S _{DL}	-1.0	_	1.0	LSB	V _{CC} = 2.760 V
error						VrefU = 2.610 V
Nonlinearity error	S _L	-1.5	_	1.5	LSB	VrefL = 0.050 V (10 mV/LSB)
Zero code error	S _{ZERO}	-2	_	2	LSB	Without load ($I_{AO} = \pm 0$)
Full scale error	S _{FULL}	-2	_	2	LSB	
Output capacitive load	Co	_	_	0.1	μF	
Buffer amplifier output	Ro	_	5	_	Ω	
impedance						

AC Characteristics

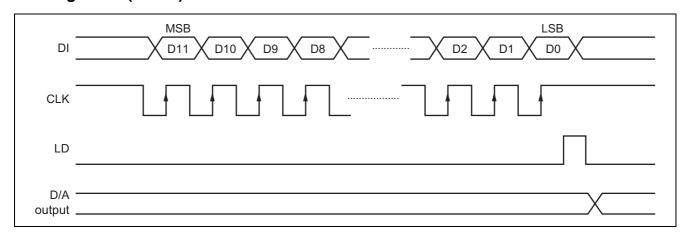

 $(V_{CC}, VrefU = +3 V \pm 10\%, V_{CC} \ge VrefU, GND, VrefL = 0 V, Ta = -20 to +85$ °C, unless otherwise noted.)

			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Clock "L" pulse width	t _{CKL}	200	_	_	ns	
Clock "H" pulse width	tckh	200	_	_	ns	
Clock rise time	t _{CR}	_	_	200	ns	
Clock fall time	t _{CF}	_	_	200	ns	
Data setup time	t _{DCH}	30	_	_	ns	
Data hold time	t _{CHD}	60	_	_	ns	
LD setup time	t _{CHL}	200	_	_	ns	
LD hold time	t _{LDC}	100	_	_	ns	
LD "H" pulse duration time	t _{LDH}	100	_	_	ns	
Data output delay time	t _{DO}	70	_	350	ns	C _L = 100 pF
D/A output setting time	t _{LDD}	_	_	300	μS	$C_L \ge 100 \text{ pF}, \text{ V}_{AO}: 0.1 \leftrightarrow 2.6 \text{ V}$
						This time until the output becomes the final value of 1/2 LSB

Timing Chart

Digital Data Format

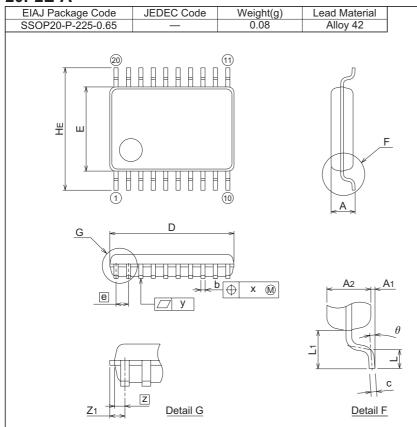
DAC Data

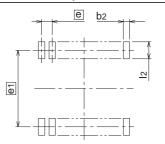

D0	D1	D2	D3	D4	D5	D6	D7	D/A Output
0	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 1 + VrefL
1	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 2 + VrefL
0	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 3 + VrefL
1	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 4 + VrefL
:	:	:	:	:	:	:	:	:
0	1	1	1	1	1	1	1	(VrefU – VrefL) / 256 × 255 + VrefL
1	1	1	1	1	1	1	1	VrefU

Note: $VrefU = V_{DD}$, $VrefL = V_{SS}$

DAC Select Data

D8	D9	D10	D11	DAC Selection
0	0	0	0	Don't care
0	0	0	1	A _{O1} selection
0	0	1	0	A _{O2} selection
0	0	1	1	A _{O3} selection
0	1	0	0	A _{O4} selection
0	1	0	1	A _{O5} selection
0	1	1	0	A _{O6} selection
0	1	1	1	A ₀₇ selection
1	0	0	0	A _{O8} selection
1	0	0	1	A _{O9} selection
1	0	1	0	A _{O10} selection
1	0	1	1	A _{O11} selection
1	1	0	0	A _{O12} selection
1	1	0	1	Don't care
1	1	1	0	Don't care
1	1	1	1	Don't care


Timing Chart (Model)



Package Dimensions

20P2E-A

Plastic 20pin 225mil SSOP

Recommended Mount Pad

Troopining and Trouting and							
Symbol	Dimens	ion in Mill	imeters				
Symbol	Min	Nom	Max				
Α	_		1.45				
A1	0	0.1	0.2				
A2	_	1.15	_				
b	0.17	0.22	0.32				
С	0.13	0.15	0.2				
D	6.4	6.5	6.6				
Е	4.3	4.4	4.5				
е	_	0.65	_				
HE	6.2	6.4	6.6				
L	0.3	0.5	0.7				
L1	_	1.0	_				
Z	_	0.325	_				
Z1	_		0.475				
Х	_		0.13				
У	_		0.1				
θ	0°		10°				
b2	_	0.35	_				
e1	_	5.8	_				
12	1.0	_	_				

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510