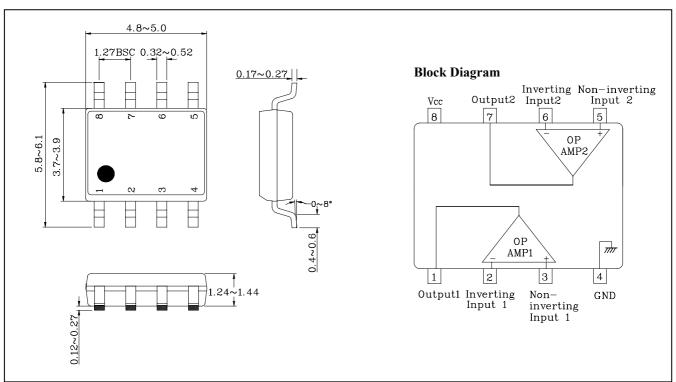
unit: mm

Description

The S358 consists of two independent high gain Internally frequency compensated operational amplifiers designed to operate from a single power supply over a wide range of voltage.

Features

- Input common mode voltage range includes ground
- Internally frequency compensated for unity gain
- Large DC voltage gain: 100dB
- Wide bandwidth for unity gain: 1 MHz
- Very low power consumption
- Wide supply voltage range : Single : 3V \sim 30V, Dual : $\pm 1.5 \sim \pm 15$ V


Applications

- Transducer amplifier
- DC gain blocks
- Conventional operational amplifiers

Ordering Information

Type NO.	Marking	Package Code			
S358	S358	SOP-8			

Outline Dimensions

KSI-8001-004

Absolute maximum ratings

Characteristic	Symbol	Ratings	Unit	
Supply voltage	V_{CC}	36 or ±18	V	
Differential input voltage	V_{IND}	32	V	
Input voltage	V_{IN}	-0.3 ~ +32	V	
Power Dissipation	P_{D}	300	mW	
Operating temperature	T_{opr}	-45 ~ +85	°C	
Storage temperature	T_{stg}	-55 ~ 150	°C	

Electrical Characteristics

(Unless otherwise specified. $V_{CC} = 5V$ and $-45 \, ^{\circ}\text{C} \le \text{Ta} \le +85 \, ^{\circ}\text{C}$)

Characteristic	Symbol	Test Con	dition	Min.	Тур.	Max.	Unit
Input offset voltage	V _{IOS}	$5V \le V_{CC} \le 30V$	(Ta=25 °C)	-	±2	±7	
		$Rg = 0\Omega, \ 0V \le V_{IC} \le V_{CC} - 1.5V$		-	-	±9	mV
Input offset voltage drift	$\Delta V_{IOS}/\Delta T$	$Rg = 0\Omega$		-	7	-	μV/°C
Input offset current	I_{IOS}	_	(Ta=25 °C)	-	±5	±50	- nA
input onset current	IOS			-		±150	
Input offset current drift	$\Delta I_{IOS}/\Delta T$	-		-	10	-	pA/°C
Input bias current	${ m I}_{ m IB}$	_	(Ta=25 °C)	-	45	250	- nA
	*1B			-	40	500	
Input common mode voltage range	V_{ICR}	.,	(Ta=25 °C)	0	-	V _{CC} −1.5	V
		V _{CC} = 30V		0	-	V _{cc} -2	V
Complex grows at	I _{CC}	$V_{CC} = 30V$, $R_L = \infty$		-	1	2	^
Supply current		$V_{CC} = 5V$, $R_L = \infty$		-	0.7	1.2	mA
Large signal voltage gain	G_V	$V_{CC} = 15V$ (Ta=25 °C)	(Ta=25 °C)	25	100	-	\//ma\/
		$R_L \ge 2 \text{ K}\Omega$		15	1	-	V/mV
Output voltage swing	V _{OH}	V _{CC} = 30V	$R_L=2 K\Omega$	26	ı	-	V
			R _L =10 KΩ	27	28	-	
	V _{OL}	V_{CC} =5V, $R_L \le 10 \text{ K}\Omega$		-	3	20	mV
Common mode rejection ratio	CMRR	(Ta=25 °C)		65	90	-	dB
Power supply rejection ratio	PSRR	(Ta=25 °C)		65	100	-	dB
Output source current	I _{O+}	$V_{CC} = 15V$	(Ta=25 °C)	20	40	-	m ^
		$V_{IN+} = 1V$, $V_{IN-} = 0V$		10	20	-	mA mA
Output sink current	I _{O-}	$V_{CC} = 15V$	(Ta=25 °C)	10	20	-	mA
		$V_{IN+} = 0V$, $V_{IN-} = 1V$		5	8	-	ША
		$V_{OUT} = 200 \text{mV},$ $V_{IN+} = 0 \text{V}, V_{IN-} =$		12	50	-	μΑ
Output short circuit to ground	I _{SC}	Ta=25 °C		-	40	60	mA

KSI-8001-004 2

Electrical Characteristic Curves

Fig. 1 I_{CC} - V_{CC}

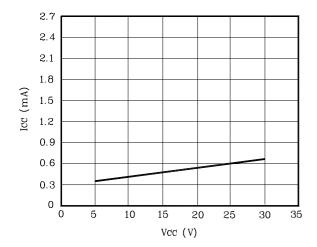


Fig. 2 I_{IB} - V_{CC}

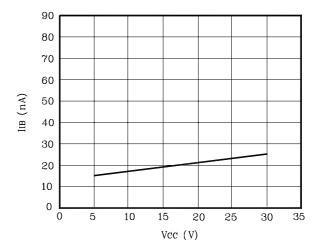


Fig. 3 V_{IOS}-T_a

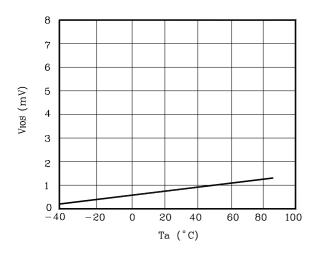


Fig. 4 I_O-T_a

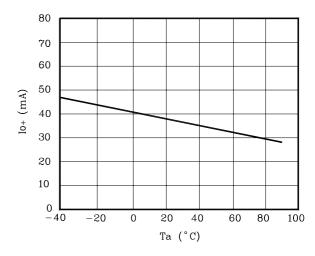


Fig. 5 CMRR-f

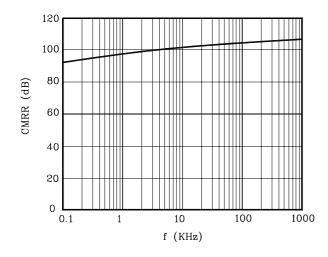
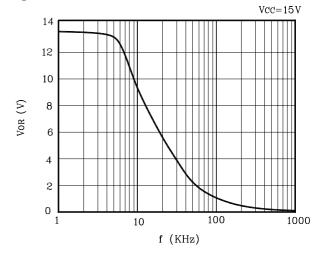



Fig. 6 V_{OR} -f

KSI-8001-004 3

These AUK products are intended for usage in general electronic equipments (Office and communication equipment, measuring equipment, domestic electrification, etc.).

Please make sure that you consult with us before you use these AUK products in equipments which require high quality and/or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, traffic signal, combustion central, all types of safety device, etc.).

AUK cannot accept liability to any damage which may occur in case these AUK products were used in the mentioned equipments without prior consultation with AUK.

KSI-8001-004 4