ILE4270

5-V Low-Drop Fixed Voltage Regulator

Functional Description

This device is a 5-V low-drop fixed-voltage regulator. The maximum input voltage is 42 V (65 V, \leq 400 ms). Up to an input voltage of 26 V and for an output current up to 550 mA it regulates the output voltage within a 2 % accuracy. The short circuit protection limits the output current of more than 650 mA.

The device incorporates over voltage protection and temperature protection that disables the circuit at unpermissibly high temperatures.

Features

- Output voltage tolerance $\leq \pm 2$ %
- Low-drop voltage
- Integrated overtemperature protection
- Reverse polarity protection
- Input voltage up to 42 V
- Overvoltage protection up to 65 V (\leq 400 ms)
- Short-circuit proof
- · Suitable for use in automotive electronics
- Wide temperature range
- · Adjustable reset time
- ESD protection > 4000 V

Application Description

The IC regulates an input voltage in the range of 5.5 V < VI < 36 V to VQnom = 5.0 V. Up to 26 V it produces a regulated output current of more than 550 mA. Above 26 V the save-operating-area protection allows operation up to 36 V with a regulated output current of more than 300 mA. Overvoltage protection limits operation at 42 V. The overvoltage protection hysteresis restores operation if the input voltage has dropped below 36 V. A reset signal is generated for an output voltage of VQ < 4.5 V. The delay for power-on reset can be set externally with a capacitor.

Design Notes for External Components

An input capacitor *C*I is necessary for compensation of line influences. The resonant circuit consisting of lead inductance and input capacitance can be damped by a resistor of approx. 1 Ω in series with *C*I. An output capacitor *C*Q is necessary for the stability of the regulating circuit. Stability is guaranteed at values of *C*Q \ge 22 μ F and an ESR of < 3 Ω .

P-TO220-5-12

P-TO263-5-1

Pin Definitions and Functions

Pin	Symbol	Function
1	Ι	Input : block to ground directly on the IC with ceramic capacitor
2	RO	Reset Output : the open collector output is connected to the 5 V
		output via an integrated resistor of 30 k Ω .
3	GND	Ground : internally connected to heatsink.
4	D	Reset Delay : connect a capacitor to ground for delay time adjustment.
5	Q	5-V Output : block to ground with 22 μ F capacitor, ESR < 3 Ω .

Circuit Description

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of a series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturation of the power element. If the output voltage decreases below 4.5 V, an external capacitor *C*D on pin 4 (D) will be discharged by the reset generator. If the voltage on this capacitor drops below *V*DRL, a reset signal is generated on pin 2 (RO), i.e. reset output is set low. If the output voltage rises above 4.5 V, *C*D will be charged with constant current. After the power-on-reset time the voltage on the capacitor reaches *V*DU and the reset output will be set high again. The value of the power-on-reset time can be set within a wide range depending of the capacitance of *C*D.

The IC also incorporates a number of internal circuits for protection against:

- Overload
- Overvoltage
- Overtemperature
- Reverse polarity

Block Diagram

Absolute Maximum Ratings

*T*j = – 40 to 150 °C

Parameter	Symbol	Limit	Values	Unit	Notes
Falameter	Symbol	min. max.		Onit	Notes
Input					
Voltage	VI	- 42	42	V	
Voltage	VI		65	V	t ≤ 400 ms
Current	II				internally limited
Reset Output					
Voltage	VR	- 0.3	7	V	
Current	IR				Internally limited
Reset Delay					
Voltage	VD	- 0.3	7	V	
Current	ID				Internally limited
Output					
Voltage	VQ	- 1.0	16	V	
Current	IQ				Internally limited
Ground					
Current	IGND	- 0.5	-	A	-
Temperatures					
Junction temperature	Tj		150	°C	-
Storage temperature	Tstg	- 50	150	°C	

Optimum reliability and life time are guaranteed if the junction temperature does not exceed 125 °C in operating mode. Operation at up to the maximum junction temperature of 150 °C is possible in principle. Note, however, that operation at the maximum permitted ratings could affect the reliability of the device.

Operating Range

Parameter	Symbol	Limit	Values	Unit	Notes
Farameter	Symbol	min.	max.	Onit	
Input voltage	VI	6	42	V	-
Junction temperature	Tj	- 40	150	°C	-
Thermal Resistance					
Junction ambient	<i>R</i> thja	_	65	K/W	TO263
Junction case	<i>R</i> thjc	-	3	K/W	<i>t</i> < 1 ms
	Zthjc		2	K/W	TO263

Characteristics

Parameter	Symbol	Limit Values			11:4	Test Condition
Parameter		min.	typ.	max.	Unit	Test Condition
Output voltage	VQ	4.90	5.00	5.10	V	$5 \text{ mA} \le I \text{Q} \le 550 \text{ mA};$ $6 \text{ V} \le V \text{I} \le 26 \text{ V}$
Output voltage	VQ	4.90	5.00	5.10	V	$26 V \le VI \le 36 V;$ $IQ \le 300 mA$
Output current limiting	<i>I</i> Qmax	650	850	-	mA	VQ = 0 V
Current consumption <i>I</i> q = <i>I</i> I – <i>I</i> Q	Iq	-	1	1.5	mA	<i>I</i> Q = 5 mA
Current consumption Iq = II - IQ	Iq	-	55	75	mA	/Q = 550 mA
Current consumption <i>I</i> q = <i>I</i> I – <i>I</i> Q	Iq	_	70	90	mA	<i>I</i> Q = 550 mA; <i>V</i> I = 5 V
Drop voltage	Vdr	-	350	700	mV	<i>I</i> Q = 550 mA1)

 VI = 13.5 V; – 40 °C \leq Tj = \leq 125 °C (unless otherwise specified)

1) Drop voltage = $V_I - V_Q$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input)

Characteristics (cont'd)

 $VI = 13.5 \text{ V}; -40 \text{ °C} \le Tj = \le 125 \text{ °C}$ (unless otherwise specified)

Parameter	Symbol	Limit Values			Unit	Test Condition
Falameter		min.	typ.	max.	Unit	Test Condition
Load regulation	$\Delta V Q$	-	25	50	mV	<i>I</i> Q = 5 to 550 mA;
						<i>V</i> I = 6 V
Supply voltage	$\Delta V Q$	—	12	25	mV	<i>V</i> I = 6 to 26 V
regulation						<i>I</i> Q = 5 mA
Power supply	PSRR	-	54	-	dB	<i>f</i> r = 100 Hz;
Ripple rejection						<i>V</i> r = 0.5 <i>V</i> SS
Reset Generator						
Switching threshold	VRT	4.5	4.65	4.8	V	_
Reset High voltage	VROH	4.5	-	-	V	-
Reset low voltage	VROL	-	60	-	mV	Rintern = 30 k Ω 2);
						$1.0 V \le VQ \le 4.5 V$
Reset low voltage	VROL	_	200	400	mV	<i>I</i> R = 3 mA, <i>V</i> Q = 4.4 V
Reset pull-up	R	18	30	46	kΩ	internally connected
						to Q
Lower reset timing	VDRL	0.2	0.45	0.8	V	VQ < VRT
threshold						
Charge current	<i>I</i> d	8	14	25	μA	<i>V</i> D = 1.0 V
Upper timing	VDU	1.4	1.8	2.3	V	_
threshold						
Delay time	<i>t</i> d	_	13	-	ms	<i>C</i> D = 100 nF
Reset reaction time	tRR	_	_	3	μS	<i>C</i> D = 100 nF
Overvoltage Protection	•	•	•			
Turn-Off voltage	VI, ov	42	44	46	V	_

1) Drop voltage = $V_I - V_Q$ (measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input)

2) Reset peak is always lower than 1.0 V.

Test Circuit

Application Circuit

Time Response

Package Dimensions P-TO 220-5-12

ILE4270S

ILE4270G

P-TO 263-5-1

