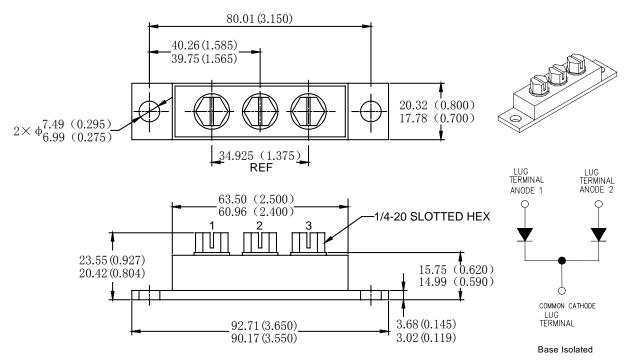
Technical Data Data Sheet 3170, Rev. A

403CMQ080/403CMQ100 SCHOTTKY RECTIFIER


Applications:

- High current switching power supply Plating power supply Free-Wheeling diodes
- Reverse battery protection Converters UPS System Welding

Features:

- 175 °C T_J operation
- Center tap module
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Mechanical Dimensions: In Inches / mm

Please Note: Anode 1 = Terminal 1; Anode 2 = Terminal 3; Common Cathode = Terminal 2 Suffix R Denotes for Reversed Polarity.

PRM4 (Isolated)

Data Sheet 3170, Rev. A **Maximum Ratings**:

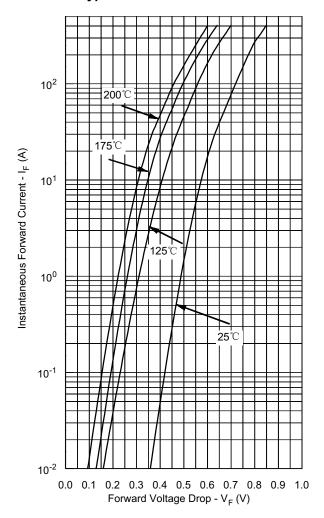
Characteristics	Symbol	Condition	Max.		Units
Peak Inverse Voltage	V _{RWM}	-	80(403CMQ080) 100(403CMQ100)		V
Max. Average Forward	I _{F(AV)}	50% duty cycle @T _C = 85 °C,	200	per leg	Α
Current		rectangular wave form	400	per device	
Max. Peak One Cycle Non-Repetitive Surge Current (per leg)	I _{FSM}	8.3 ms, half Sine pulse	3960		А
Non-Repetitive Avalanche Energy (per leg)	E _{AS}	T _J = 25 °C, I _{AS} = 1 A, L = 30 mH	15		mJ
Repetitive Avalanche Current (per leg)	I _{AR}	Current decaying linearly to zero in 1 μsec Frequency limited by T _J max. V _A = 1.5 x V _R typical	1		Α

Electrical Characteristics:

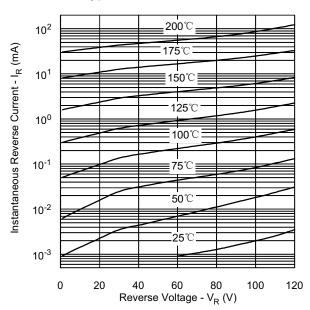
Characteristics	Symbol	Condition	Max.	Units
Max. Forward Voltage Drop	V_{F1}	@ 200 A, Pulse, T _J = 25 °C	0.83	V
(per leg) *		@ 400 A, Pulse, T _J = 25 °C	0.97	
	V_{F2}	@ 200 A, Pulse, T _J = 125 °C	0.69	V
		@ 400 A, Pulse, T _J = 125 °C	0.82	
Max. Reverse Current (per leg) *	I _{R1}	$@V_R = \text{rated } V_R, T_J = 25 ^{\circ}\text{C}$	6	mA
	I _{R2}	$@V_R = \text{rated } V_R, T_J = 125 ^{\circ}\text{C}$	140	mA
Max. Junction Capacitance	C _T	$@V_R = 5 \text{ V}, T_C = 25 ^{\circ}\text{C}$	5500	pF
(per leg)		f _{SIG} = 1 MHz		
Typical Series Inductance	Ls	Measured lead to lead 5 mm	5.0	nΗ
(per leg)		from package body		
Max. Voltage Rate of Change	dv/dt	-	10,000	V/μs

^{*} Pulse Width < 300µs, Duty Cycle <2%

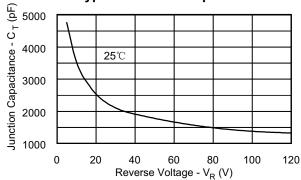
Thermal-Mechanical Specifications:


Characteristics	Symbol	Condition	Specification		Units	
Max. Junction Temperature	TJ	-	-55 to +175		°C	
Max. Storage Temperature	T _{stg}	-	-55 to +175		°C	
Maximum Thermal Resistance Junction to Case (per leg)	R _{eJC}	DC operation	0.40		°C/W	
Maximum Thermal Resistance Junction to Case (per package)	$R_{ heta JC}$	DC operation	0.20		°C/W	
Maximum Thermal Resistance, Case to Heat Sink	$R_{\theta CS}$	Mounting surface, smooth and greased	0.10		°C/W	
Approximate Weight	wt	-	79		g	
Mounting Torque	T _M	-	Mounting Torque Base Terminal Torque	24 (min) 35 (max) 35 (min) 46 (max)	Kg-cm	
Case Style	PRM4 Isolated					

^{• 221} West Industry Court 🗏 Deer Park, NY 11729-4681 🗏 (631) 586-7600 FAX (631) 242-9798 •


[•] World Wide Web Site - http://www.sensitron.com • E-Mail Address - sales@sensitron.com •

Data Sheet 3170, Rev. A


Typical Forward Characteristics

Typical Reverse Characteristics

Typical Junction Capacitance

[•] World Wide Web Site - http://www.sensitron.com • E-Mail Address - sales@sensitron.com •

Data Sheet 3170, Rev. A

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior not ice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
 4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed writ ten permission of Sensitron Semiconductor.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.