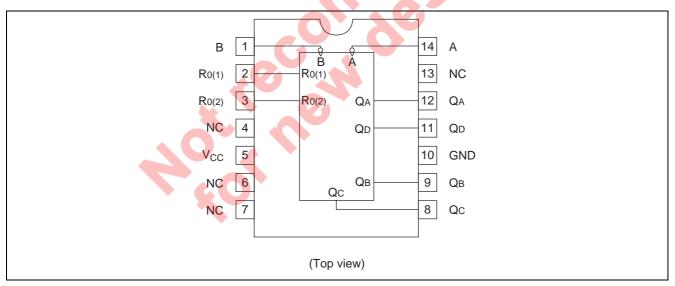


REJ03D0423-0200 Rev.2.00 Feb.18.2005

The HD74LS93 contains four master-slave flip-flops and additional gating to provide a divide-by-two counter and three-state binary counter for divide-by-eight. To use this maximum count length of this counter, the B input is connected to the Q_A output. The input count pulses are applied to input A and the outputs are described in the appropriate function table.


Features

• Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LS93P	DILP-14 pin	PRDP0014AB-B (DP-14AV)	Р	—
HD74LS93FPEL	SOP-14 pin (JEITA)	PRSP0014DF-B (FP-14DAV)	FP	EL (2,000 pcs/reel)

Note: Please consult the sales office for the above package availability.

Pin Arrangement

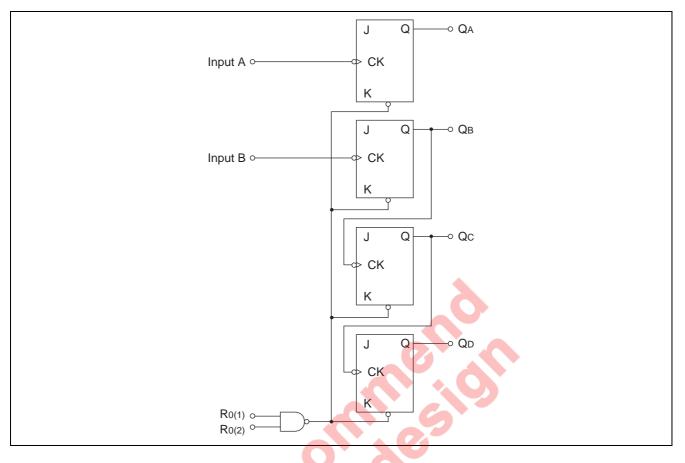
Function Table

Reset / Count Function Table

Reset	inputs	Outputs						
R ₀₍₁₎	R ₀₍₂₎	Q_{D}	Q _C	Q _B	Q _A			
Н	Н	L	L	L	L			
L	Х	Count						
Х	L	Count						

Note: H; high level, L; low level, X; irrelevant

• BCD Count Sequence (Notes 1)


Count	Outputs							
	QD	Qc	Q _B	Q _A				
0	L	L	L	L				
1	L	L	L	Н				
2	L	L	Н	L				
3	L	L	H	Н				
4	L	Н		Н				
5	L	Н	L	Н				
6	L	Н	Н	L				
7	L	н	Н	Н				
8	Н	L		L				
9	Н	L	L	Н				
10	Н	L	Н	L				
11	Н		И	Н				
12	Н	Н	L	L				
13	Н	Н	L	Н				
14	н	Н	Н	L				
15	н	H	Н	Н				

Notes: 1. Output QA is connected to input B for BCD count.

2. H; high level, L; low level

Block Diagram

Absolute Maximum Ratings

Absolute Maximum Ratings									
ltem		Symbol	Ratings	Unit					
Supply voltage		Vcc	7	V					
	R Inputs	V _{IN}	7	V					
Input voltage	A, B Inputs	V _{IN}	5.5	V					
Power dissipation		PT	400	mW					
Storage temperature		Tstg	-65 to +150	٦°					

Note: Voltage value, unless otherwise noted, are with respect to network ground terminal.

Recommended Operating Conditions

Item		Symbol	Min	Тур	Max	Unit
Supply voltage		V _{CC}	4.75	5.00	5.25	V
Output ourroot		I _{ОН}	—	—	-400	μA
Output current		I _{OL}	—	—	8	mA
Operating temperature		Topr	-20	25	75	°C
Count fragmanay	A input	f _{count}	0	—	32	MHz
Count frequency	B input		0	—	16	
	A input		15	—	—	
Pulse width	B input	tw	30		—	ns
	Reset input		15	—	—	
Setup time		t _{su}	25	—	—	ns

Electrical Characteristics

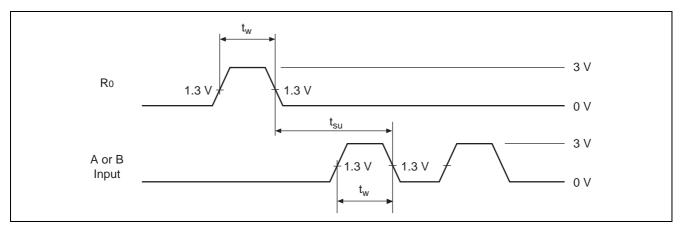
 $(Ta = -20 \text{ to } +75 \ ^{\circ}\text{C})$

	Symbol	min.	typ.*	max.	Unit	Condition		
		2.0	_		V			
Input voltage			_	0.8	V			
		2.7	_	—	V	$V_{CC} = 4.75 \text{ V}, \text{ V}_{IH} = 2 \text{ V}, \text{ V}_{IL} = 0.8 \text{ V}$ $I_{OH} = -400 \mu\text{A}$		
oltage	M	_	_	0.4	V	I _{OL} = 4 mA**	$V_{CC} = 4.75 \text{ V}, \text{ V}_{IH} = 2 \text{ V},$	
	VOL			0.5	V	I _{OL} = 8 mA**	$V_{IL} = 0.8 V$	
Any reset		—	—	-0.4				
A input	I _{IL}	_	—	-2.4	mA	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I}$	′ ₁ = 0.4 V	
B input		_	—	-1.6				
Any reset		—	—	20				
A input	Цн	_	_	40	μA	$V_{CC} = 5.25 \text{ V}, \text{ V}_{I} =$	= 2.7 V	
B input			_	40				
Any reset			_	0.1		V _I = 7 V		
A input	I ₁		_	0.2	mA	V _I = 5.5 V	V _{CC} = 5.25 V	
B input			_	0.2		V _I = 5.5 V		
cuit output	l _{os}	-20	_	-100	mA	V _{cc} = 5.25 V		
urrent	I _{CC} ***	_	9	15	mA	V _{CC} = 5.25 V		
Input clamp voltage		—	—	-1.5	V	V _{CC} = 4.75 V, I _{IN} = -18 mA		
	Any reset A input B input Any reset A input B input Any reset A input B input uit output uit output	VIL VOH VOL Any reset A input Any reset A input B input Any reset A input B input IIH B input III B input III B input Ios Irrent	$\begin{array}{c c c c c c c } & V_{IL} & & \\ \hline V_{IL} & 2.7 & \\ \hline & & \hline & & \hline \\ & & \hline & & \hline \\ \hline & & \hline & & \hline \\ \hline & & \hline & & \hline \\ \hline & & \hline \hline & & \hline \\ \hline & & \hline \hline & & \hline \\ \hline & & \hline \hline & & \hline \hline \\ \hline & & \hline \hline & & \hline \hline \\ \hline \hline & & \hline \hline \hline \\ \hline & & \hline \hline \hline \\ \hline \hline & $	$\begin{array}{c c c c c c c c } V_{IL} & - & - & - & - & - & - & - & - & - & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

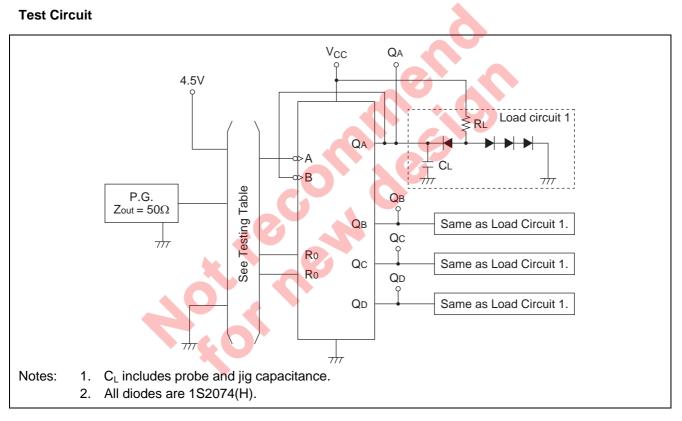
Notes: * $V_{CC} = 5 V$, Ta = $25^{\circ}C$

** Q_A output is tested at specified I_{OL} plus the limit value of IIL for the B input. This permits driving the B input while maintaining full fan-out capability.

*** I_{cc} is measured with all outputs open, both R₀ inputs grounded following momentary connection to 4.5 V, and all other inputs grounded.


Switching Characteristics

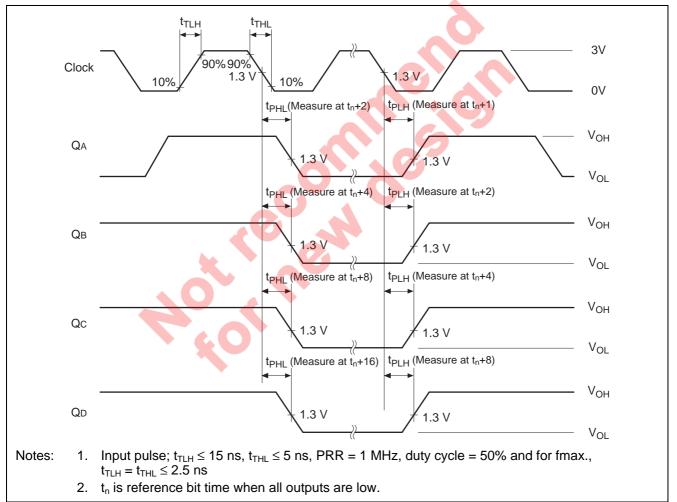
		\mathbf{C}					(V	$V_{\rm CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}$
ltem	Sym <mark>bo</mark> l	Inputs	Outputs	min.	typ.	max.	Unit	Condition
Maximum count frequency	f _{max}	A	Q _A	32	42	—	MHz	
		В	Q _B	16		_		
	t _{PLH}	A	Q _A		10	16		
	t _{PHL}	¢			12	18	ns	C _L = 15 pF, R _L = 2 kΩ
	t _{PLH}	A	Q _D		46	70		
	t _{PHL}			—	46	70		
	t _{PLH}	р	B Q _B	—	10	16		
Propagation delay time	t _{PHL}	ם	QΒ		14	21		
	t _{PLH}	В	Qc		21	32		
	t _{PHL}	ם	QC		23	35		
	t _{PLH}	В	0		34	51		
	t _{PHL}	B Q _D	⊂vD	_	34	51		
	t _{PHL}	Set-to-0	Q_A to Q_D	_	26	40		

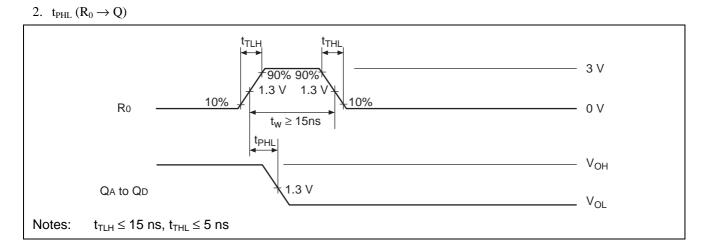

Note: Refer to Test Circuit and Waveform of the Common Item "TTL Common Matter (Document No.: REJ27D0005-0100)".

Timing Definition

Testing Method

Testing Table

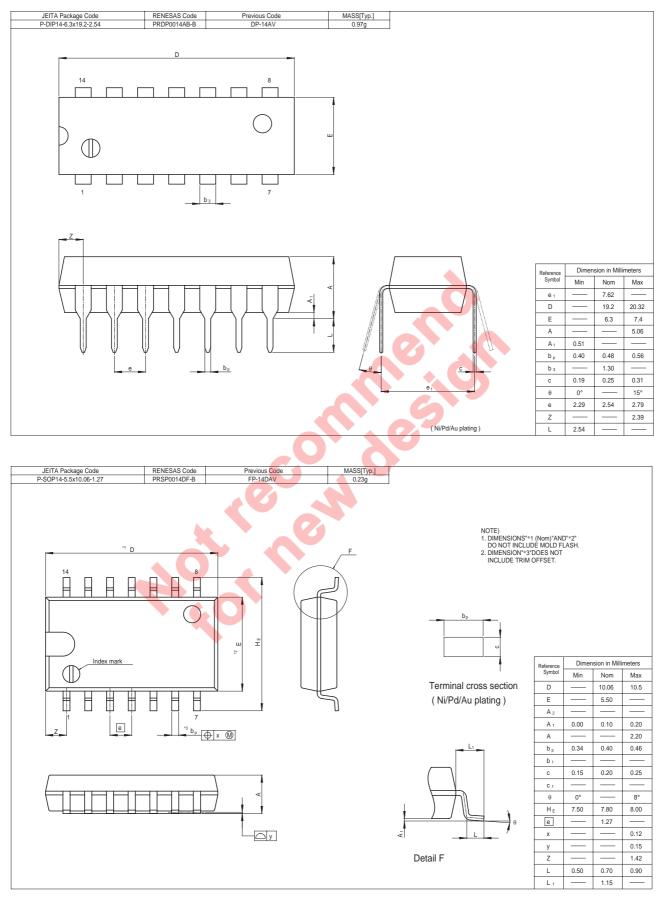

Item	From input		Inputs		Outputs				
nem	to output	Α	В	R ₀	Q _A	QB	Qc	QD	
f _{max}	$A\toQ$	IN	to Q _A	GND	Out	Out	Out	Out	
Imax	$B\toQ$	4.5 V	IN	GND	—	Out	Out	Out	
	$A\toQ_A$	IN	to Q _A	GND	Out	—	—	—	
	$A\toQ_D$	IN	to Q _A	GND	_	—	_	Out	
t _{PLH}	$B\toQ_B$	4.5 V	IN	GND	_	Out	_	—	
t _{PHL}	$B\toQ_C$	4.5 V	IN	GND	—	—	Out	—	
	$B\toQ_D$	4.5 V	IN	GND	_	—	_	Out	
	${\sf R_0}^{\star\star} \to {\sf Q}$	IN*	to Q _A	IN	Out	Out	Out	Out	


* For initialized.

** Measured with each input and unused inputs at 4.5 V.

Waveform

1. f_{max} , t_{PLH} , t_{PHL} (Clock \rightarrow Q)



Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- (ii) Use of nonnammapie material of (iii) prevention against any marunction of misnap.
 Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assum

- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

http://www.renesas.com