

March 2004 V3

Features

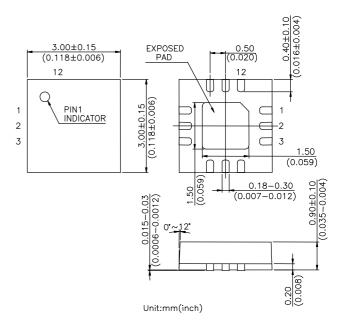
QFN12L (3 x 3 mm)

• Low Insertion Loss: 0.7 dB @ 2.5 GHz

0.9 dB @ 4.9 to 6.0 GHz

• Isolation: 25 dB @ 2.5 GHz

30 dB @ 4.9 to 6.0 GHz


Low DC Power Consumption

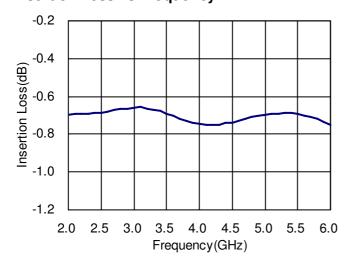
Miniature QFN12L (3x3 mm) Plastic Package

PHEMT process

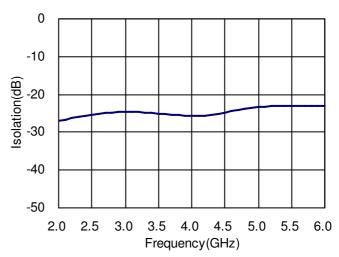
Description

The HWS407 is a GaAs PHEMT MMIC DPDT switch operating at DC-6 GHz in a low cost miniature QFN12L (3 x 3 mm) plastic package. The HWS407 features low insertion loss and high isolation with very low DC power consumption. This switch can be used in IEEE 802.11a/b/g WLAN systems for combination of transmit/receive and antenna diversity functions.

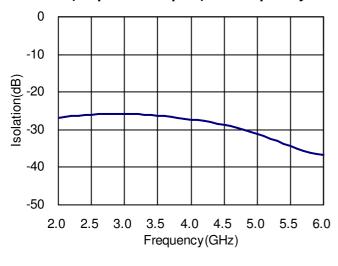
Electrical Specifications at 25 °C with 0, +3V Control Voltages

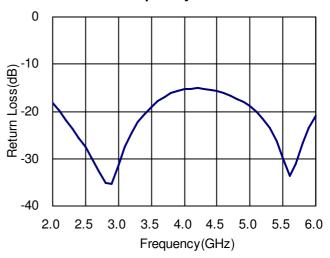

Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Insertion Loss	0.1-6.0 GHz 0.1-1.0 GHz 2.4-2.5 GHz 4.9-6.0 GHz		0.9 0.6 0.7 0.9	1.2	dB dB dB dB
Isolation (on port to off port)	0.1-6.0 GHz 2.4-2.5 GHz 4.9-6.0 GHz	27	25 25 30		dB dB dB
Isolation (off port to off port)	0.1-6.0 GHz 2.4-2.5 GHz 4.9-6.0 GHz		33 43 33		dB dB dB
Isolation (TX to RX or ANT1 to ANT2)	0.1-6.0 GHz 2.4-2.5 GHz 4.9-6.0 GHz		22 25 22		dB dB dB
Return Loss	0.1-6.0 GHz		15		dB
Input Power for One dB Compression	2.0-6.0 GHz		30		dBm
Control Current			20	200	uA

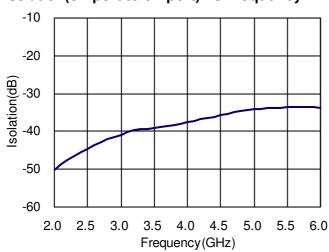
Note: All measurements made in a 50 ohm system with 0/+3.0V control voltages, unless otherwise specified.



Typical Performance Data with 8pF Capacitors @ +25 ℃

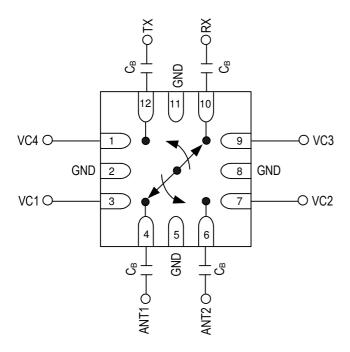

Insertion Loss vs Frequency


Isolation(TX port to RX port) vs Frequency


Isolation(on port to off port) vs Frequency

Return Loss vs Frequency

Isolation(off port to off port) vs Frequency



March 2004 V3

Absolute Maximum Ratings

Parameter	Absolute Maximum		
RF Input Power	+32 dBm @ +3V		
Control Voltage	+6V		
Operating Temperature	-40℃ to +85℃		
Storage Temperature	-65℃ to +150℃		

Pin Out (Top View)

Note:

- 1. DC blocking capacitors $C_B=8pF$ are required on all RF ports.
- 2. Exposed pad in the bottom must be connected to ground by via holes.
- 3. TX and RX ports can be used interchangeably.

Logic Table for Switch On-Path

VC1	VC2	VC3	VC4	On-Path
0	1	0	1	ANT1-RX
0	1	1	0	ANT1-TX
1	0	0	1	ANT2-RX
1	0	1	0	ANT2-TX

Note:

- 1. '1' = +3V to +5V, '0' = 0V to +0.2V
- 2. VC1 and VC2 are used for antenna selection, while VC3 and VC4 are used for TX/RX selection.