TOSHIBA FIELD EFFECT TRANSISTOR SILICON P CHANNEL MOS TYPE(U - MOS)

TPCF8104

Tentative

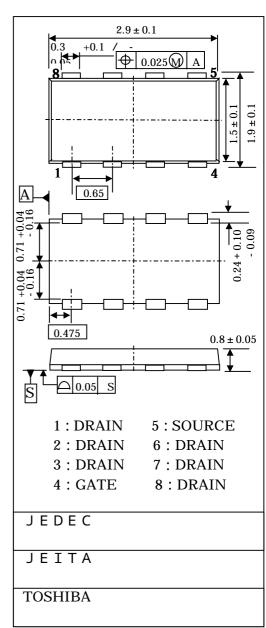
NOTE BOOK PC APPLICATIONS
PORTABLE EQUIPMENTS APPLICATIONS

UNIT:mm

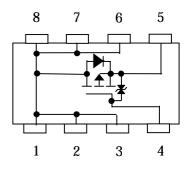
Low Drain - Source ON Resistance: $R_{DS(ON)} = 26m$ (Typ.)

- High Forward Transfer Admittance: $|Y_{fs}| = S(Typ.)$
- Low Leakage Current : $I_{DSS} = -10 \mu A (Max.) (V_{DS} = -30 V)$
- Enhancement Mode : $V_{th} = -0.8 \sim -2.0 \text{ V} (V_{DS} = -10 \text{ V}, I_D = -1 \text{ mA})$

MAXIMUM RATINGS (Ta = 25)


CHARACTER	SYMBOL	RATING	UNIT	
Drain - Source Volta	V _{DSS}	-30	V	
Drain - Gate Voltage	V _{DGR}	-30	V	
$(R_{GS} = 20 k)$				
Gate - Source Voltag	V _{GSS}	± 20	V	
Drain Current	DC (Note1)	ΙD	-6	Α
Drain Current	Pulse (Note1)	Ι _{DP}	-24	Α
Drain Power Dissi	pation (t=5s)	P _D	2.5	W
(Note2a)				
Drain Power Dissi	pation (t=5s)	P _D	0.7	W
(Note2b)				
Single Pulse Avalanch	E _{AS}	5.9	m J	
Avalanche Current	I _{AR}	3	Α	
Repetitive Avalanche		0.25	m J	
Channel Temperature	T _{c h}	150		
Storage Temperature	T _{stg}	- 55 ~ 150		

THERMAL CHARACTERISTICS


CHARACTERISTICS	SYMBOL	MAX.	UNIT	
Thermal Resistance, Channel to	R _{th(ch-a)}	50.0	/ W	
Ambient (t=5s) (Note2a)				
Thermal Resistance, Channel to	R _{th(ch-a)}	178.6	/ W	
Ambient (t=5s) (Note2b)	(

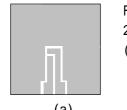
Note1, Note2, Note3, Note4, Note5 Please see next page.

THIS TRANSISTOR IS AN ELECTROSTATIC SENSITIVE DEVICE. PLEASE HANDLE WITH CAUTION.

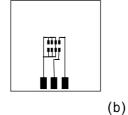
Circuit Configuration

Tentative

ELECTRICAL CHARACTERISTICS (Ta = 25)


ELLOTRIONE OF	/////OTENTOTTOO (Ta	20)					
CHARA	CTERISTICS	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Gate Leakage	Current	I _{GSS}	$V_{GS} = \pm 16V$, $V_{DS} = 0V$	-	-	± 10	μΑ
Drain Cut-of	f Current	I _{DSS}	$V_{DS} = -30 V$, $V_{GS} = 0 V$	-	-	-10	μΑ
Drain-Source Breakdown		$V_{(BR)DSS}$	$I_D = -10 \text{m A}$, $V_{GS} = 0 \text{ V}$	-30	-	-	V
Voltage		$V_{(BR)DSX}$	$I_D = -10 \text{m A}$, $V_{GS} = 20 \text{ V}$	-15	-	-	V
Gate Thresho	old Voltage	V_{th}	$V_{DS} = -10V$, $I_D = -1mA$	-0.8	-	-2.0	V
Drain-Source	e ON Resistance	R _{DS(ON)}	$V_{GS} = -4.5V$, $I_D = 3A$	-	37	46	m
			$V_{GS} = -10V$, $I_D = -3A$	-	26	33	
Forward Tran	nsfer Admittance	Y _{f s}	$V_{DS} = -10V$, $I_D = -3A$	TBD	TBD	-	S
Input Capaci	Input Capacitance		$V_{DS} = -10 V , V_{GS} = 0 V$	-	TBD	-	
Reverse Tran	Reverse Transfer Capacitance		f = 1MHz	-	TBD	-	рF
Output Capac	itance	C _{rss}	1 - 1W1 F1 Z	-	TBD	-	
Switching Time	Rise Time	t r	0V	-	TBD	-	n s
	Turn-on Time	t _{o n}		-	TBD	-	
	Fall Time	t _f		-	TBD	-	
	Turn-off Time	t off		-	TBD	-	
Total Gate Charge (Gate-Source Plus Gate-Drain)		Q _g	V _{DD} -24V , V _{GS} = -10V	-	TBD	-	n C
Gate-Source Charge		Qgs	I _D = -6A	-	TBD	-	n C
Gate-Drain("Miller")Charge		Qgd		-	TBD	-	

SOURCE - DRAIN DIODE RATINGS AND CHARACTERISTICS (Ta = 25)


CHARACTERISTICS	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Pulse Drain Reverse Current	I _{DRP}	-	-	-	-24	Α
(Note1)						
Diode Forward Voltage	V _{DSF}	$I_{DR} = -6A$, $V_{GS} = 0V$	-	-	1.2	V

Note1 Please use devices on condition that the channel temperature is below 150 . Note2:

(a) Device mounted on glass-epoxy board (b) Device mounted on glass-epoxy board (b)

FR-4 $25.4 \times 25.4 \times 0.8$ (Unit in mm)

FR-4 $25.4 \times 25.4 \times 0.8$ (Unit in mm)

Note3: V_{DD} =-24V, Tch=25 (initial), L=0.5mH, R_G =25 , I_{AR} =-3.0A

Note4: Repetitive rating; Pulse Width Limited by Max. Channel Temperature.

TOSHIBA TPCF8104

RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.