

STL80NF3LL

N-CHANNEL 30V - 0.0045Ω - 80A PowerFLAT™ (6X5) STripFET™ II MOSFET

PRODUCT PREVIEW

Table 1: General Features

TYPE	V _{DSS}	R _{DS(on)}	I _D
STL80NF3LL	30 V	< 0.0055 Ω	20 A (2)

- TYPICAL $R_{DS}(on) = 0.0045 \Omega @ 10V$
- IMPROVED DIE-TO-FOOTPRINT RATIO
- VERY LOW PROFILE PACKAGE (1mm MAX)
- VERY LOW THERMAL RESISTANCE
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED

DESCRIPTION

The STL80NF3LL utilizes the second generation of STMicroelectronics unique "Single Feature SizeTM" strip-based process. The resulting transistor shows the best trade-off between on-resistance and gate charge. Such features make it the best choice in high efficiency DC-DC converters for Telecom and Computer industries. The Chipscaled PowerFLAT™ package allows a significant board space saving, still boosting the performance.

APPLICATIONS

- HIGH-EFFICIENCY DC-DC CONVERTERS
- SYNCHRONOUS RECTIFICATION

Figure 1: Package

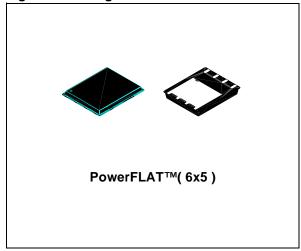
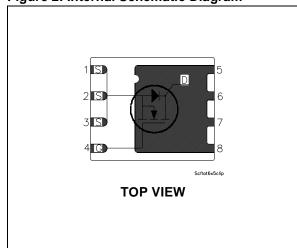



Figure 2: Internal Schematic Diagram

Table 2: Order Codes

Part Number	Part Number Marking		Packaging	
STL80NF3LL	STL80NF3LL L80NF3LL		TAPE & REEL	

Rev. 3

June 2005 1/9

Table 3: Absolute Maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V _{GS}	Gate- source Voltage	± 16	V
I _D (1)	Drain Current (continuous) at T _C = 25°C	80	А
I _D (1)	Drain Current (continuous) at T _C = 100°C	50	А
I _{DM} (3)	Drain Current (pulsed) 320		А
I _D (2)	Drain Current (continuous) at T _C = 25°C 20		А
P _{TOT} (2)	Total Dissipation at T _C = 25°C 4		W
P _{TOT} (1)	Total Dissipation at T _C = 25°C 80		W
	Derating Factor(2) 0.03		W/°C
T _{stg}	Storage Temperature – 55 to 150		°C
Tj	Max. Operating Junction Temperature	- 33 to 130	C

Table 4: Thermal Data

Rthj- _C	Thermal Resistance Junction-Case (Drain)	1.56	°C/W
Rthj-pcb (2)	Thermal Operating Junction-pcb	31.3	°C/W

ELECTRICAL CHARACTERISTICS (T_{CASE} =25°C UNLESS OTHERWISE SPECIFIED)

Table 5: On /Off

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu\text{A}, V_{GS} = 0$	30			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating, T _C = 125°C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 16 V			± 10	nA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250μA	1			V
R _{DS(on)}	Static Drain-source On	V _{GS} = 10 V, I _D = 10 A		0.0045	0.0055	Ω
	Resistance	V_{GS} = 4.5 V, I_{D} = 10 A		0.0055	0.007	Ω

Table 6: Dynamic

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (4)	Forward Transconductance	V _{DS} = 10V, I _D = 10 A		37		S
C _{iss}	Input Capacitance	V _{DS} = 25V, f= 1 MHz, V _{GS} = 0		2160		pF
Coss	Output Capacitance			614		pF
C _{rss}	Reverse Transfer Capacitance			98		pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		4.1		Ω

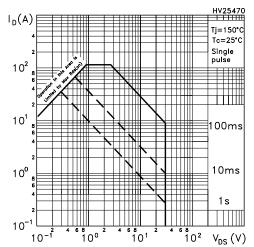
2/9

ELECTRICAL CHARACTERISTICS (CONTINUED)

Table 7: Switching On

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$\begin{array}{c} t_{\text{d(on)}} \\ t_{\text{r}} \\ t_{\text{d(off)}} \\ t_{\text{f}} \end{array}$	Turn-on Delay Time Rise Time Turn-off-Delay Time Fall Time	V_{DD} = 15 V, I_{D} = 10 A R_{G} = 4.7 Ω , V_{GS} = 4.5V (see Figure 15)		23.5 39 47.5 37		ns ns ns ns
$egin{array}{c} Q_{g} \ Q_{gs} \ Q_{gd} \end{array}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 15V, I _D = 10 A, V _{GS} = 4.5 V (see Figure 17)		26 7 12	35	nC nC nC

Table 8: Source Drain Diode


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				20	Α
I _{SDM} (3)	Source-drain Current (pulsed)				80	Α
V _{SD} (4)	Forward On Voltage	I _{SD} = 20 A, V _{GS} = 0			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse RecoveryCharge Reverse Recovery Current	I_{SD} = 20 A, di/dt= 100 A/ μ s, V_{DD} = 15 V, T_j = 150°C (see Figure 16)		39 45 2.3		ns nC A

⁽¹⁾ The value is rated according R_{thj-C}.
(2) When mounted on FR-4 board of 1in², 2oz Cu., t<10sec

⁽³⁾ Pulse width limited by safe operating area.

⁽⁴⁾ Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

Figure 3: Safe Operating Area

Figure 4: Output Characteristics

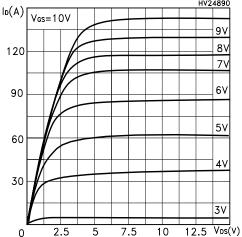


Figure 5: Transconductance

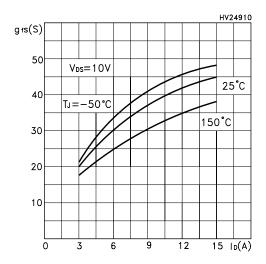


Figure 6: Thermal Impedance

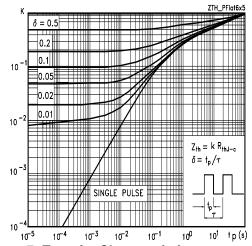


Figure 7: Transfer Characteristics

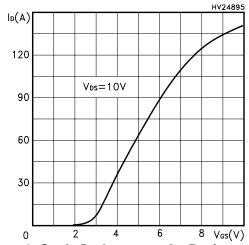
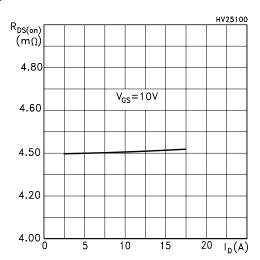



Figure 8: Static Drain-source On Resistance

47/

Figure 9: Gate Charge vs Gate-source Voltage

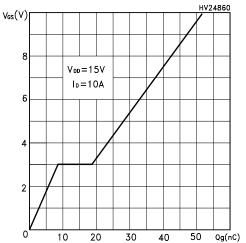


Figure 10: Normalized Gate Thereshold Voltage vs Temperature

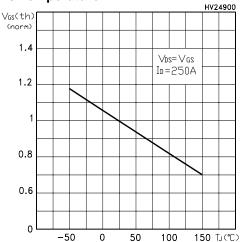


Figure 11: Normalized On Resistance vs Temperature

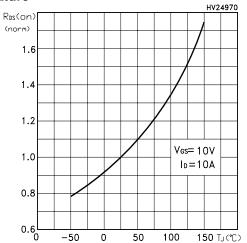


Figure 12: Capacitance Variations

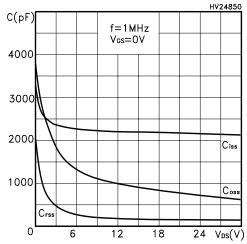


Figure 13: Normalized BVDSS vs Temperature

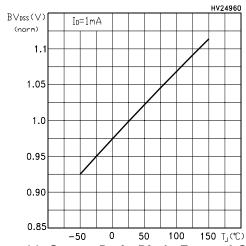


Figure 14: Source-Drain Diode Forward Characteristics

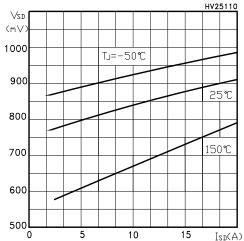
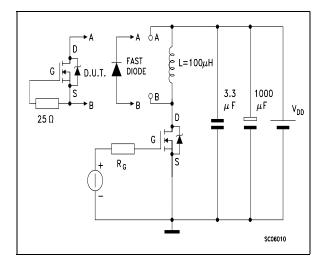
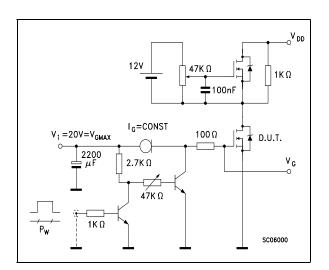
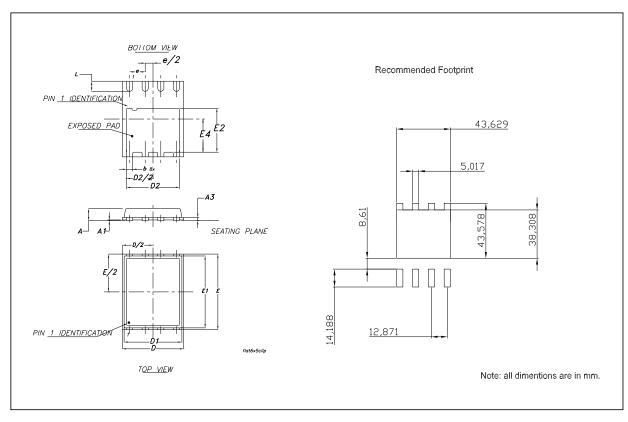


Figure 15: Switching Times Test Circuit For Resistive Load

Figure 16: Test Circuit For Diode Recovery Times


Figure 17: Gate Charge Test Circuit

477.

PowerFLAT™ (6x5) MECHANICAL DATA

DIM		mm.			inch	
DIM.	MIN. TYP MAX.		MIN.	TYP.	MAX.	
А	0.80	0.83	0.93	0.031	0.032	0.036
A1		0.02	0.05		0.0007	0.0019
А3		0.20			0.007	
b	0.35	0.40	0.47	0.013	0.015	0.018
D		5.00			0.196	
D1		4.75			0.187	
D2	4.15	4.20	4.25	0.163	0.165	0.167
E		6.00			0.236	
E1		5.75			0.226	
E2	3.43	3.48	3.53	0.135	0.137	0.139
E4	2.58	2.63	2.68		0.103	0.105
е		1.27			0.050	
L	0.70	0.80	0.90	0.027	0.031	0.035

Table 9: Revision History

Date	Revision	Description of Changes
18-Apr-2005	1	First Release.
20-Jun-2005	2	Updated mechanical data
22-Jun-2005	3	New R _G value on table 6

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

