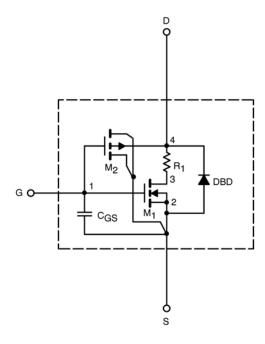


SPICE Device Model Si4888DY Vishay Siliconix

N-Channel Reduced Q_g, Fast Switching MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

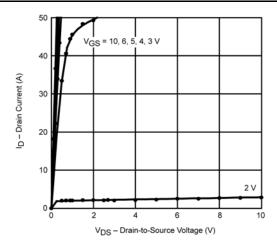
SUBCIRCUIT MODEL SCHEMATIC

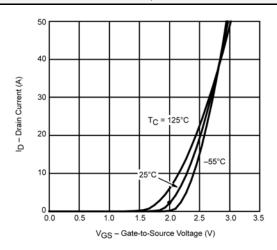
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

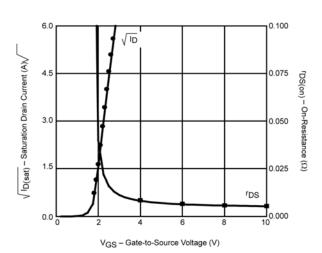
Document Number: 71714 www.vishay.com S-60245—Rev. B, 20-Feb-06

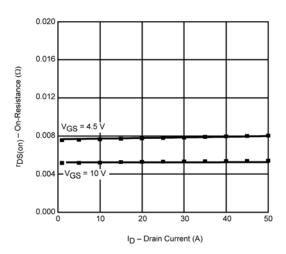
SPICE Device Model Si4888DY

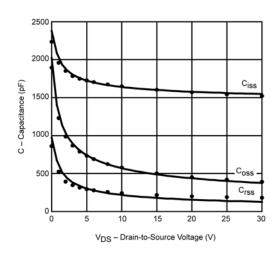
Vishay Siliconix

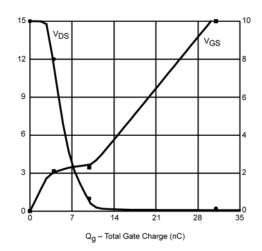

SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.1		V
On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	838		Α
Drain-Source On-State Resistance ^a	r _{DS(on)}	V _{GS} = 10 V, I _D = 16 A	0.0054	0.0058	Ω
		V_{GS} = 4.5 V, I_{D} = 13 A	0.0080	0.0080	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 16 A	49	38	S
Diode Forward Voltage ^a	V_{SD}	$I_{S} = 3 A, V_{GS} = 0 V$	0.74	0.74	V
Dynamic ^b	-		-		-
Total Gate Charge	Q_g	V _{DS} = 15 V, V _{GS} = 5 V, I _D = 16 A	16	16.3	nC
Gate-Source Charge	Q_{gs}		4	4	
Gate-Drain Charge	Q_{gd}		5.9	5.9	
Turn-On Delay Time	t _{d(on)}	V_{DD} = 15 V, R_L = 15 Ω $I_D \cong$ 1 A, V_{GEN} = 10 V, R_G = 6 Ω	12	14	ns
Rise Time	t _r		10	10	
Turn-Off Delay Time	t _{d(off)}		28	44	
Fall Time	t _f		26	20	
Source-Drain Reverse Recovery Time	t _{rr}	$I_F = 3 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$	32	40	


Notes a. Pulse test; pulse width $\leq 300~\mu s,$ duty cycle $\leq 2\%.$ b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4888DY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.