Typical Applications

- CDMA/FM Cellular and PCS Systems

- Tri-Mode/Dual-Band CDMA Applications
- W-CDMA Systems
- Wireless Local Loop Systems
- Spread-Spectrum Cordless Phones
- High Speed Data Modems

Product Description

The RF2668 is an integrated complete quadrature modulator, IF AGC amplifier, upconverter, and PLL, designed for the transmit section of dual-mode CDMA/FM cellular, PCS, and tri-mode CDMA applications. It is designed to modulate baseband I and Q signals, amplify the resulting IF signals while providing 95 dB of gain control range, and perform the final upconversion to UHF. Noise Figure, IP_{3}, and other specifications are designed to be compatible with the IS-98 Interim Standard. This circuit is designed as part of RFMD's newest CDMA chipset, which also includes the RF2667 CDMA/FM Receive IF AGC and Demodulator. The IC is manufactured on an advanced $18 \mathrm{GHz} \mathrm{F}_{\mathrm{T}}$ Silicon Bipolar process, and is supplied in a 48-lead plastic LQFP package.

Optimum Technology Matching ${ }^{\circledR}$ A pplied

\square Si BJT	\square GaAs HBT	\square GaAs MESFET
\square Si Bi-CMOS	\square SiGe HBT	\square Si CMOS

Functional Block Diagram

Package Style: LQFP-48_7x7

Features

- Supports Tri-Mode Operation
- Digitally Controlled Power Down Modes
-2.7V to 3.3V Operation
- Digital First LO Quadrature Divider
- Double-Balanced UHF Upconvert Mixer
- IF AGC Amp with 95dB Gain Control

Ordering Information	
RF2668	CDMA/FM Transmit Modulator, IF AGC, and
	Upconverter with Integrated PLL
RF2668 PCBA-PCS/CEL	Fully A ssembled Evaluation Boards
RF2668 PCBA-DO	Fully Assembled Evaluation Boards
RF Micro Devices, Inc.	Tel (336) 6641233
7625 Thorndike Road	Fax (/336) 640454
Greensboro, NC 27409, USA	http://www.fmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +5	$\mathrm{~V}_{\mathrm{DC}}$
Power Down Voltage $\left(\mathrm{V}_{\mathrm{PD}}\right)$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.7$	V
I and Q Levels, per pin	1	$\mathrm{~V}_{\mathrm{PP}}$
LO1 Level, balanced	+6	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

Caution! ESD sensitive device.

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s)
5
MODULATORS AND

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
I/Q Modulator \& AGC					$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{Z}_{\mathrm{LOAD}}=200 \Omega, \\ & \mathrm{LO} 1=-10 \mathrm{dBm} @ 260 \mathrm{MHz}, \mathrm{IF}=130 \mathrm{MHz}, \\ & \text { ISIG=Q SIG }=300 \mathrm{mV}_{\mathrm{PP}}, \\ & \text { RF Output externally matched } \end{aligned}$
I/Q Input Frequency Range		0 to 20		MHz	Balanced
I/Q Input Impedance		80		$\mathrm{k} \Omega$	Balanced
I/Q Input Reference Level		1.3		$V_{D C}$	Per Pin
LO1/FM Frequency Range	0		800	MHz	
LO1/FM Input Level	-15	-10	-5	dBm	
LO1/FM Input Impedance		200		Ω	Balanced
Sideband Suppression	35	40		dBc	I/Q Amplitude adjusted to within $\pm 20 \mathrm{mV}$
		27		dBc	Unadjusted
Carrier Suppression	40	50		dBc	I/Q DC Offset adjusted to within $\pm 20 \mathrm{mV}$
		30		dBc	Unadjusted
Max Output, FM Mode	+2.5	+5		dBm	$\mathrm{V}_{\mathrm{GC}}=2.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{T}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Max Output, CDMA Mode	-3	0		dBm	$\begin{aligned} & \mathrm{V}_{\mathrm{GC}}=2.4 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}=-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\ & \text { IS-95A CDMA Modulation } \end{aligned}$
	-2	0		dBm	ISIG=QSIQ=300mVpp@100kHz
Min Output, CDMA Mode		-95	-89	dBm	$\mathrm{V}_{\mathrm{GC}}=0.3 \mathrm{~V}_{\mathrm{DC}}, \mathrm{~T}=-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C},$ IS-95A CDMA Modulation
Output Power Accuracy	-3		+3	dB	$\mathrm{T}=-20$ to $+85^{\circ} \mathrm{C}$, Ref $=25^{\circ} \mathrm{C}$
	-2		+2	dB	$1.4 \mathrm{~V} \leq \mathrm{GC} \leq 2.5$
Adjacent Channel Power Rejection @ 885 kHz		-60		dBc	IS-95A CDMA Modulation $P_{\text {OUT }}=-5 \mathrm{dBm}$
Adjacent Channel Power Rejection @ 1.98MHz		-69		dBc	IS-95A CDMA Modulation $P_{\text {OUT }}=-5 \mathrm{dBm}$
Output Noise Power		-117	-111	$\mathrm{dBm} / \mathrm{Hz}$	$P_{\text {OUT }}=-1 \mathrm{dBm}, \mathrm{T}=-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Output Impedance Current Consumption		$\begin{gathered} 200 \\ 40 \end{gathered}$		$\begin{gathered} \Omega \\ \mathrm{mA} \end{gathered}$	Balanced I/Q modulator and AGC only.

RF2668

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Parameter} \& \multicolumn{3}{|c|}{Specification} \& \multirow[b]{2}{*}{Unit} \& \multirow[b]{2}{*}{Condition} \\
\hline \& Min. \& Typ. \& Max. \& \& \\
\hline \begin{tabular}{l}
UHF Upconverter \\
General \\
IF Input Impedance \\
IF Input Frequency Range \\
LO2 Input Impedance \\
LO2 Input Level \\
LO2 Input Frequency Range \\
RF to LO2 Isolation \\
LO Input VSWR \\
Current Consumption
\end{tabular} \& 0
-6 \& \[
\begin{gathered}
200 \\
\\
50 \\
-3 \\
\\
30 \\
<2: 1 \\
24
\end{gathered}
\] \& \[
\begin{gathered}
400 \\
0 \\
2.5
\end{gathered}
\] \& \begin{tabular}{l}
\(\Omega\) \\
MHz \\
\(\Omega\) \\
dBm \\
GHz \\
dB \\
mA
\end{tabular} \& \begin{tabular}{l}
Output externally matched \\
Balanced \\
Single Ended \\
\(50 \Omega\) \\
UHF upconverter only.
\end{tabular} \\
\hline Cellular Conversion Gain Noise Figure (SSB) Output IP3 \& -1.5 \& \[
\begin{gathered}
-0.5 \\
15 \\
+13 \\
\\
<2: 1
\end{gathered}
\] \& \& \[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~dB} \\
\mathrm{dBm}
\end{gathered}
\] \& \[
\begin{aligned}
\& \mathrm{RF} \mathrm{OUT}=830 \mathrm{MHz} \\
\& R F_{\text {OUT }}=830 \mathrm{MHz} \\
\& \mathrm{P}_{\text {IN }}=-15 \mathrm{dBm} \text { per tone, } \\
\& 200 \mathrm{kHz} \text { tone separation, } \mathrm{RF}_{\text {OUT }}=830 \mathrm{MHz}, \\
\& \mathrm{LO} 2=960 \mathrm{MHz} @-3 \mathrm{dBm} \\
\& \mathrm{RF}_{\text {OUT }}=830 \mathrm{MHz}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
W-CDMA \\
Conversion Gain \\
Noise Figure Output IP3 \\
RF Output VSWR
\end{tabular} \& \& \[
\begin{gathered}
-1.5 \\
\text { TBD } \\
10 \\
\\
<2: 1
\end{gathered}
\] \& \& \[
\begin{gathered}
\mathrm{dB} \\
\mathrm{~dB} \\
\mathrm{dBm}
\end{gathered}
\] \& \begin{tabular}{l}
\(\mathrm{RF}_{\text {OUT }}=1950 \mathrm{MHz}\) \\
\(\mathrm{P}_{\mathrm{IN}}=-15 \mathrm{dBm}\) per tone, 200 kHz tone separation, \(\mathrm{RF}_{\text {OUT }}=1950 \mathrm{MHz}\), LO2=1570MHz@-3dBm \(R F_{\text {OUT }}=1950 \mathrm{MHz}\). See note on eval board schematic.
\end{tabular} \\
\hline \begin{tabular}{l}
Dual Output Cellular Conversion Gain Noise Figure Output IP3 \\
RF Output VSWR PCS Conversion Gain Noise Figure Output IP3 \\
RF Output VSWR
\end{tabular} \& -1.5

-1.5 \& \[
$$
\begin{gathered}
-0.5 \\
15 \\
12.5 \\
\\
<1.5: 1 \\
-1.0 \\
15 \\
10.5 \\
\\
<1.5: 2
\end{gathered}
$$

\] \& \& | dB |
| :--- |
| dB |
| dBm |
| dB |
| dB |
| dBm | \& | $\mathrm{RF}_{\text {OUT }}=830 \mathrm{MHz}$ |
| :--- |
| $\mathrm{RF}_{\text {OUT }}=830 \mathrm{MHz}$ |
| $\mathrm{P}_{\mathrm{IN}}=-15 \mathrm{dBm}$ per tone, |
| 200 kHz tone separation, $\mathrm{RF}_{\text {OUT }}=830 \mathrm{MHz}$, |
| LO2=960MHz@-3dBm |
| $\mathrm{RF}_{\text {OUT }}=830 \mathrm{MHz}$ |
| $\mathrm{RF}_{\text {OUT }}=1880 \mathrm{MHz}$ |
| RF $_{\text {OUT }}=1880 \mathrm{MHz}$ |
| $\mathrm{P}_{\mathrm{IN}}=-15 \mathrm{dBm}$ per tone, |
| 200 kHz tone separation, $\mathrm{RF}_{\text {OUT }}=1880 \mathrm{MHz}$, |
| LO2 $=1750 \mathrm{MHz} @-3 \mathrm{dBm}$ |
| $\mathrm{RF}_{\text {OUT }}=1880 \mathrm{MHz}$ |

\hline | VCO |
| :--- |
| Phase Noise @ 100kHz Current Consumption | \& \& \[

$$
\begin{gathered}
-110 \\
1
\end{gathered}
$$

\] \& \& \[

$$
\begin{gathered}
\mathrm{dBc} / \mathrm{Hz} \\
\mathrm{~mA}
\end{gathered}
$$
\] \& PLL locked with Loop BW=5kHz, Tank Values: 39 nH and SMV1234 varactor.

\hline | PLL |
| :--- |
| Charge Pump Current TCXO Input Level PLL Lock Time Current Consumption | \& \& \[

$$
\begin{gathered}
0.8 \\
\text { 4/Loop BW } \\
4 \\
\hline
\end{gathered}
$$

\] \& 100 \& \[

$$
\begin{gathered}
\mu \mathrm{A} \\
\mathrm{~V}_{\mathrm{PP}} \\
\mathrm{~s} \\
\mathrm{~mA} \\
\hline
\end{gathered}
$$
\] \& PLL only.

\hline
\end{tabular}

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Power Supply Supply Voltage Current Consumption Power Down Current VPD HIGH Voltage VPD LOW Voltage	$\begin{gathered} 2.7 \\ \mathrm{~V}_{\mathrm{CC}}-0.3 \end{gathered}$	$\begin{gathered} 3.0 \\ 69 \\ <10 \end{gathered}$	3.3 0.3	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mu \mathrm{~A} \\ \mathrm{~V} \\ \mathrm{~V} \end{gathered}$	Total device current.
PLL Settings Application LO Frequency, MHz Crystal, MHz Reference Divider Phase Detector Frequency, kHz Prescaler Swallow Counter (A) Fixed Divider (N) Net N in VCO Path SET1 SET2	$\begin{gathered} \text { Japan } \\ 333.7 \\ 19.2 \\ 192 \\ 100 \\ 32 / 33 \\ 9 \\ 104 \\ 3337 \\ \text { VCC } \\ \text { GND } \end{gathered}$	$\begin{gathered} \text { Japan } \\ 333.7 \\ 19.8 \\ 198 \\ 100 \\ 32 / 33 \\ 9 \\ 104 \\ 3337 \\ \text { GND } \\ \text { VCC } \\ \hline \end{gathered}$	US/Korea 260.76 19.68 252 78.09524 $32 / 33$ 11 104 3339 GND GND		IF Frequency=LO Frequency/2

Pin	Function	Description	Interface Schematic
$\mathbf{1}$	NC	Not connected.	
$\mathbf{2}$	NC	Not connected.	RF output pin. An external shunt inductor to $V_{\text {Cc }}$ plus a series blocking/ matching capacitor are required for 50 Ω output.
$\mathbf{3}$	RF OUT		
$\mathbf{4}$	VCC4	Supply for the mixer stage only. The supply for the mixer is separated to maximize IF to RF isolations and reduce the carrier leakage. A 10nF external bypass capacitor is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
$\mathbf{5}$	LO2+	One half of the balanced mixer LO2 input. In single-ended applications, the other half of the input, LO2- is AC grounded. This is a 50 imped- ance port. This pin is NOT internally DC-blocked. An external blocking capacitor (100pF recommended) must be provided if the pin is con- nected to a device with DC present.	
$\mathbf{1 5}$	MOD OUT+		

Pin	Function	Description	Interface Schematic
17	AGC_DEC	AGC decoupling pin. An external bypass capacitor of 1 nF capacitor is required. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
18	VGC	Analog gain control for AGC amplifiers. Valid control voltage ranges are from $0.3 \mathrm{~V}_{\mathrm{DC}}$ to $2.4 \mathrm{~V}_{\mathrm{DC}}$. The gain range for the AGC is 95 dB . These voltages are valid ONLY for a $39 \mathrm{k} \Omega$ source impedance. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	
19	VCC2	Supply for the modulator stage only. A 10 nF external bypass capacitor is required and an additional $0.1 \mu \mathrm{~F}$ will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
20	GND1	Same as pin 16.	
21	Q SIG	Baseband input to the Q mixer. This pin is DC-coupled. The DC level of 1.3 V must be supplied to this pin to bias the transistor. Input impedance of this pin is $50 \mathrm{k} \Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	
22	Q REF	Reference voltage for the Q mixer. This voltage should be the same as the DC voltage supplied to the Q SIG pin. For maximum carrier suppression, DC voltage on this pin relative to the Q SIG DC voltage may be adjusted. Input impedance of this pin is $50 \mathrm{k} \Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the $V_{C C}$ pins.	See pin 21.
23	I REF	Reference voltage for the I mixer. This voltage should be the same as the DC voltage supplied to the I SIG pin. For maximum carrier suppression, DC voltage on this pin relative to the I SIG DC voltage may be adjusted. Input impedance of this pin is $50 \mathrm{k} \Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	See pin 24.
24	I SIG	Baseband input to the I mixer. This pin is DC coupled. The DC level of 1.3 V must be supplied to this pin to bias the transistor. Input impedance of this pin is $50 \mathrm{k} \Omega$ minimum. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	
25	NC	Not connected.	
26	VCO_ISET	An external resistor of $47 \mathrm{k} \Omega$ is used to set the VCO current for minimum phase noise.	
27	VCC1	Supply Voltage for the LO1 flip-flop and limiting amp only. This supply is isolated to minimize the carrier leakage. A 1 nF external bypass capacitor is required, and an additional $0.1 \mu \mathrm{~F}$ will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
28	LO1-	External LO input to modulator. Controlled by VCO_EN signal. Logic Iow is internal VCO, while logic high is external VCO.	See pin 29.

Pin	Function	Description	Interface Schematic
29	LO1+	External LO input to modulator. Controlled by VCO_EN signal. Logic low is internal VCO, while logic high is external VCO.	
30	VCO-	See VCO+ description.	
31	VCO+	This port is used to supply DC voltage to the VCO as well as to tune the center frequency of the VCO. Equal value inductors should be connected to this pin and pin 30 although a small imbalance can be used to tune in the proper frequency range.	
32	DO	Output of the charge pump, and input to the VCO control. An RC network from this pin to ground is used to establish the PLL bandwidth.	
33	LD	Lock detector output for synthesizer. Requires external transistor to provide hysteresis and inversion of signal. See Application circuit.	
34	PLLGND	Ground for synthesizer. For best performance, keep traces physically short and connect immediately to ground plane.	
35	PLLVCC	Supply for the PLLVCC only. A 10 nF external bypass capacitor is required and an additional $0.1 \mu \mathrm{~F}$ will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
36	SET2	PLL Setting (Divider) pin. See the PLL settings table.	
37	SET1	Same as pin 36.	
38	OSCREF	TCXO reference input for synthesizer.	
39	VREFPLL	Bypass pin for the synthesizer reference voltage.	
40	PLLISET	Current setting pin for synthesizer charge pump. For normal operation, a 390Ω resistor to ground should be used to set the current.	
41	PLLON	Synthesizer Enable pin.	See pin 45.
42	VCO_EN	VCO Enable pin. Switches between internal and external VCO.	See pin 45.
43	MIX_EN	Power down control for mixer only. When connected to logic "high" ($>\mathrm{V}_{\mathrm{CC}}-0.3$) the mixer circuits are operating; when connected to ground ($\leq 0.3 \mathrm{~V}$), the mixer is turned off but all other circuits are operating. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	
44	TX_EN	Shuts down the entire TX path. VCO is still active when TX disabled. Logic high ($>\mathrm{V}_{\mathrm{CC}}-0.3$) for TX Enable.	
45	CE	Power down control for overall circuit. When logic "high" ($\geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}$), all circuits are operating; when logic "low" ($\leq 0.3 \mathrm{~V}$), all circuits are turned off. The input impedance of this pin is $>10 \mathrm{k} \Omega$. A DC voltage less than or equal to the maximum allowable Vcc may be applied to this pin when no voltage is applied to the V_{CC} pins.	
46	MODE	Selects between CDMA and FM mode. This is a digitally controlled input. A logic "high" ($\geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}_{\mathrm{DC}}$) selects CDMA mode. A logic "low" $\left(<0.3 \mathrm{~V}_{\mathrm{DC}}\right)$ selects FM mode. In FM mode, this switch enables the FM amplifier and turns off the I\&Q modulator. The impedance on this pin is $30 \mathrm{k} \Omega$. A DC voltage less than or equal to the maximum allowable V_{CC} may be applied to this pin when no voltage is applied to the V_{CC} pins.	

Pin	Function	Description	Interface Schematic
$\mathbf{4 7}$	VCC3	Supply voltage for the AGC and the Bandgap circuitry. A 1 nF external bypass capacitor is required and an additional 0.1 μ F will be required if no other low frequency bypass capacitors are nearby. The trace length between the pin and the bypass capacitors should be minimized. The ground side of the bypass capacitors should connect immediately to ground plane.	
$\mathbf{4 8}$	BG OUT	Bandgap voltage reference. This voltage, constant over temperature and supply variation, is used to bias internal circuits. A 1 nF external bypass capacitor is required.	

Preliminary
 RF2668

Pin-Out

Application Schematic

 Single- or Dual-Mode Operation

Application Schematic Tri-Mode/Dual-Band Operation

Evaluation Board Schematic $\mathrm{RF}_{\text {OUT }}=830 \mathrm{MHz}$

(Download Bill of Materials from www.rfmd.com.)
**Denotes not normally populated.

$$
\text { NOTE: To tune the board for RF out }=1950 \mathrm{MHz} \text {, change } \mathrm{L} 1 \text { to } 2.2 \mathrm{nH}
$$

Preliminary
 RF2668

Evaluation Board Schematic Dual Output Band

MODULATORS AND UPCONVERTERS

Evaluation Board Layout
 2.500" X 2.250"

Board Thickness 0.031", Board Material FR-4

Evaluation Board Layout - Dual Band Output

RF2668 Preliminary

