

PI5A127

Features

- Single-Supply Operation (+2V to +6V)
- Rail-to-Rail Analog Signal Dynamic Range
- Low On-Resistance (7.2-ohm with 5V supply) Minimizes Distortion and Error Voltages
- On-Resistance Flatness, 3-ohm typ.
- Low Charge Injection Reduces Glitch Errors. Q = 1.6pC typ.
- High Speed. $t_{ON} = 7 \text{ns typ.}$
- Wide-3dB Bandwidth: 326 MHz
- High-Current Channel Capability:>100mA
- TTL/CMOS Logic Compatible
- Low Power Consumption (5µW typ.)
- Packaging (Pb-free & Green Available)
- -8-pin, 118 mil plastic MSOP (U)
- -8-pin, 150 mil plastic SOIC (W)

Applications

- Audio, Video Switching and Routing
- Battery-Powered Communication Systems
- Computer Peripherals
- Telecommunications
- Portable Instrumentation
- · Mechanical Relay Replacement
- Cell Phones
- PDAs

Dual, Wide Bandwidth Analog Switches

Description

The PI5A127 is a dual SPST (single-pole single-throw) analog switches designed for single supply operation. These high-precision devices are ideal for low-distortion audio, video, signal switching and routing.


The PI5A127 is a normally closed (NC) switch.

Each switch conducts current equally well in either direction when on. When off, they block voltages up to V+.

These switches are fully specified with +5V and +3.3V supplies. With +5V, they guarantee <10-ohm ON-resistance. On-resistance matching between channels is within 2-ohm. On-resistance flatness is less than 5-ohm over the specified range. These switches also guarantee fast switching speeds ($t_{\rm ON} < 20$ ns).

These products are available in 8-pin SOIC and MSOP plastic packages for operation over the industrial temperature range $(-40^{\circ}\text{C to} + 85^{\circ}\text{C})$.

Functional Diagrams, Pin Configurations and Truth Tables

Absolute Maximum Ratings

Voltages Referenced to GND	
V+	0.5V to +7V
$V_{\text{IN}}, V_{\text{COM}}, V_{\text{NC}}, V_{\text{NO}} (\text{Note 1}) \dots$	0.5V to V++2V
	or 30mA, whichever occurs first
Current (any terminal except COM	1,NO,NC)30mA
Current, COM, NO, NC	100mA
(Pulsed at 1ms, 10% duty cycle).	120mA

Thermal Information

Continuous Power Dissipation	
-6 (derate 7mW/°C above +70°C)	550mW
Storage Temperature	-65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1:

Signals on NC, NO, COM, or IN exceeding V+ or GND are clamped by internal diodes. Limit forward diode current to 30mA.

Caution: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.

Electrical Specifications - Single +5V Supply

 $(V+ = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp. (°C)	Min. ⁽²⁾	Typ. ⁽¹⁾	Max. ⁽²⁾	Units
Analog Switch	Analog Switch						
Analog Signal Range ⁽³⁾	Vanalog		Full	0		V+	V
On Resistance	Day		25		7.2	10	<u> </u>
On Resistance	R_{ON}	$V+ = 4.5V, I_{COM} = -30mA,$	Full			12	
On-Resistance Match	A D	V_{NO} or $V_{NC} = +2.5V$	25		0.20	2	
Between Channels ⁽⁴⁾	$\Delta R_{ m ON}$		Full			4	
On-Resistance	R _{FLAT} (ON)	$V+ = 5V,$ $I_{COM} = -30 \text{mA},$ $V_{NO} \text{ or } V_{NC} = 1V, 2.5V, 4V$	25		2.72	3.5	
Flatness ⁽⁵⁾	()		Full			4	
NO or NC Off Leakage	I _{NO(OFF)} or	$V+ = 5.5V, V_{COM} = 0V,$ $V_{NO} \text{ or } V_{NC} = 4.5V$	25		0.18		
Current ⁽⁶⁾	I _{NC(OFF)}		Full	-200		200	
COM Off Leakage Current ⁽⁶⁾	ICOM(OFF)	$V+ = 5.5V,$ $V_{COM} = + 4.5V, V_{NO}$ or $V_{NC} = \pm 0V$	25		0.20		nA
			Full	-200		200	
COM On Leakage Current ⁽⁶⁾	I _{COM(ON)}	$V+ = 5.5V$, $V_{COM} = +4.5V$ V_{NO} or $V_{NC} = +4.5V$	25		0.20		
			Full	-200		200	

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

2

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} \max R_{ON} \min$.
- 5. Flatness is defined as the difference between the maximum and minimum value of ON-resistance measured.
- 6. Leakage parameters are 100% tested at maximum rated hot temperature and guaranteed by correlation at +25°C.

PS8328E 01/26/06

Electrical Specifications - Single +5V Supply (continued)

 $(V + = +5V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp(°C)	$\mathbf{Min.}^{(1)}$	Typ. ⁽²⁾	Max. ⁽¹⁾	Units
Logic Input						•	
Input High Voltage	V _{IH}	Guaranteed logic High Level		2			3.7
Input Low Voltage	V _{IL}	Guaranteed logic Low Level	Full			0.8	V
Input Current with Voltage High	I _{INH}	$V_{IN} = 2.4V$, all others = $0.8V$	Full	-1	0.005	1	
Input Current with Voltage Low	I _{INL}	$V_{IN} = 0.8V$, all others = 2.4V		-1	0.005	1	
Dynamic	•		•				
Turn-On Time	4000		25		7	15	ns
Turn-On Time	ton	V = = 5V Figure 1	Full			20	
Turn-Off Time	town	$V_{CC} = 5V$, Figure 1	25		1	7	
Turn-Oil Time	t _{OFF}		Full			10	
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, \text{ Vgen} = 0 \text{V},$ $Rgen = 0\Omega, \text{ Figure 2}$	25		1.6	10	pC
Off Isolation	OIRR	$R_L = 50\Omega$, $C_L = 5pF$, f = 10MHz, Figure 3			-43		- dB
Crosstalk	Xtalk	$R_L = 50\Omega$, $C_L = 5pF$, f = 10 MHz, Figure 4			-43		
NC or NO Capacitance	C(off)	C 11.11 Firm 5			5.5		
COM Off Capacitance	Ccom(off)	f = 1kHz, Figure 5			5.5		pF
COM On Capacitance	Ccom(on)	f = 1kHz, Figure 6			13		
-3dB Bandwidth	BW	$R_L = 50\Omega$, Figure 7	Full		326		MHz
Distortion	D	$R_{L} = 10$			0.2		%
Supply					•		
Power-Supply Range	V+			2		6	V
Positve Supply Current	I+	$V+ = 5.5V, \ V_{IN} = 0V$ or $V_{CC}, \ V+$ All Channels on or off	Full			1	μА

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design.

$\textbf{Electrical Specifications - Single + 3.3V Supply} (V + = +3.3V \pm 10\%, GND = 0V, V_{INH} = 2.4V, V_{INL} = 0.8V)$

Parameter	Symbol	Conditions	Temp.(°C)	Min. ⁽¹⁾	Typ. ⁽²⁾	Max.(1)	Units		
Analog Switch									
Analog Signal Range ⁽³⁾	Vanalog			0		V+	V		
On-Resistance	D.	$V+=3V$, $I_{COM}=-30$ mA, V_{NO} or $V_{NC}=1.5V$	25		12	18	Ω		
On-Resistance	Ron		Full			22			
On-Resistance Match	$\Delta R_{ m ON}$	$V+ = 3.3V$, $I_{COM} = -30mA$, V_{NO} or $V_{NC} = 0.8V$, $2.5V$	25		1	1			
Between Channels ⁽⁴⁾			Full			2			
On-Resistance Flatness ^(3,5)	D		25		3.5	4			
On-Resistance Flatness	R _{FLAT} (ON)		Full			5			
Dynamic	Dynamic								
Turn-On Time	tox	$V+ = 3.3V, V_{NO}$	25		14	25			
Turr-On Time	ton		Full			40	na		
Turn-Off Time	t _{OFF}	4	4	or $V_{NC} = 1.5V$, Figure 1	25		4.5	12	ns
			Full			20			
Charge Injection ⁽³⁾	Q	$C_L = 1 \text{nF}, V_{GEN} = 0 \text{V},$ $R_{GEN} = 0 \text{V}, \text{ Figure 2}$	25		1.3	10	рC		
Supply									
Supply Current	I+	$V+=3.6V$, $V_{IN}=0V$ or $V+$ All Channels on or off	Full			1	μΑ		

Notes:

1. The algebraic convention, where the most negative value is a minimum and the most positive is a maximum, is used in this data sheet.

- 2. Typical values are for DESIGN AID ONLY, not guaranteed or subject to production testing.
- 3. Guaranteed by design
- 4. $\Delta R_{ON} = R_{ON} \max R_{ON} \min$.
- 5. Flatness is defined as the difference between the maximum and minimum value of ON-resistance measured.

Test Circuits/Timing Diagrams

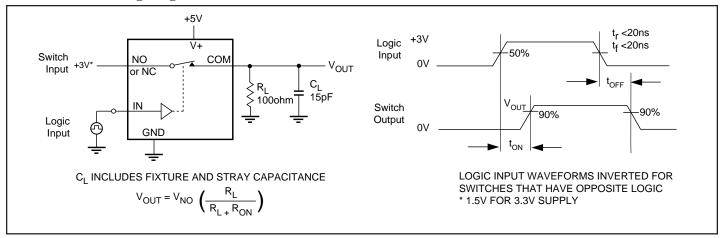


Figure 1. Switching Time

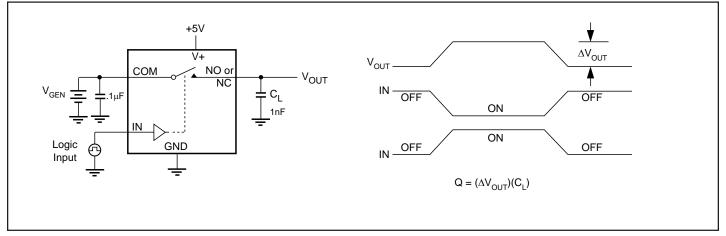


Figure 2. Charge Injection

Test Circuits/Timing Diagrams (continued)

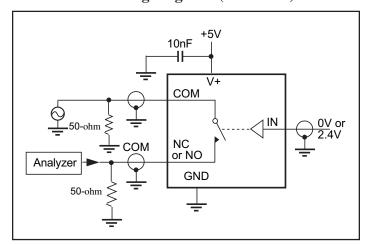


Figure 3. Off Isolation

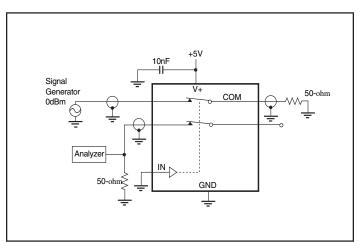


Figure 4. Crosstalk

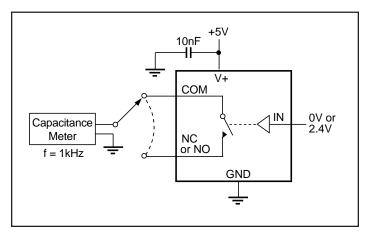


Figure 5. Channel-Off Capacitance

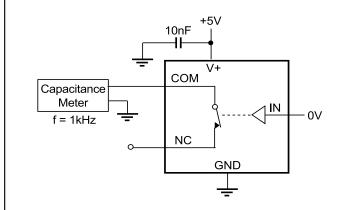


Figure 6. Channel-On Capacitance

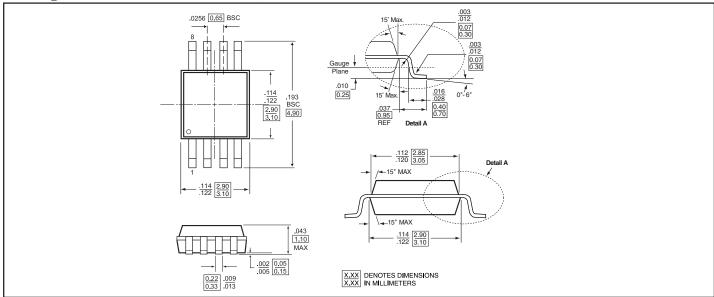
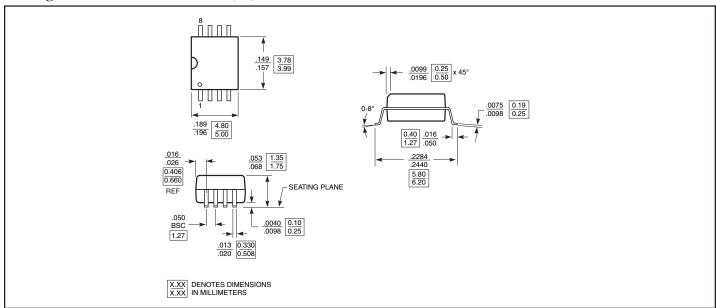


Figure 7. Bandwidth


PS8328E 01/26/06

Package Mechanical: 8-Pin MSOP (U)

Package Mechanical: 8-Pin SOIC (W)

Ordering Information

Ordering Code	Package Code	Package Type
PI5A127UX	U	8-pin MSOP
PI5A127UEX	U	Pb-free & Green, 8-pin MSOP (Tape/Reel)
PI5A127W	W	Narrow 8-pin SOIC
PI5A127WX	W	Narrow 8-pin SOIC (Tape/Reel)

Pericom Semiconductor Corporation • 1-800-435-2336 • http://www.pericom.com