Voltage Transducer LV 100-2000 For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit). ## $V_{pN} = 2000 \text{ V}$ #### **Electrical data** | \mathbf{V}_{PN} | Primary nominal r.m.s. voltage | | 2000 | | V | |------------------------|----------------------------------|-------------------------------------|----------------------------|---------------------|----| | V _P | Primary voltage, measuring range | | 0 ± 30 | 000 | V | | I _{PN} | Primary nominal r.m.s. current | | 5 | | mΑ | | R _M | Measuring resistance | | \mathbf{R}_{Mmin} | \mathbf{R}_{Mmax} | | | | with ± 15 V | $@ \pm 2000 \text{ V}_{max}$ | 0 | 170 | Ω | | | | @ $\pm 3000 \text{V}_{\text{max}}$ | 0 | 90 | Ω | | I _{SN} | Secondary nominal r.m.s. current | | 50 | | mΑ | | K _N | Conversion ratio | | 2000 V | / 50 m/ | 4 | | v _c | Supply voltage (± 5 %) | | ± 15 | | V | | I _c | Current consumption | | 10 + I _s | | mΑ | | $\dot{\mathbf{V}}_{d}$ | R.m.s. voltage for AC | 9 | | kV | | ### **Accuracy - Dynamic performance data** | X _G | Overall Accuracy @ V_{PN} , $T_{A} = 25^{\circ}C$
Linearity | | ± 0.7 < 0.1 | | %
% | |----------------|--|------------|--------------|-----------------------|----------------| | | Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$
Thermal drift of \mathbf{I}_{O}
Response time @ 90 % of $\mathbf{V}_{P \mathrm{max}}$ | 0°C + 70°C | Typ
± 0.2 | Max
± 0.2
± 0.3 | mA
mA
μs | #### General data | \mathbf{T}_{A} | Ambient operating temperature | 0 + 70 | °C | |---------------------------|---|--------------|-----------| | T _s | Ambient storage temperature | - 25 + 85 | °C | | N | Turns ratio | 20000 : 2000 | | | Р | Total primary power loss | 10 | W | | $\mathbf{R}_{_{1}}$ | Primary resistance @ T _A = 25°C | 400 | $k\Omega$ | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 70°C | 60 | Ω | | m | Mass | 850 | g | | | Standards 1) | EN 50178 | | | | | | | #### **Features** - Closed loop (compensated) voltage transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0 - Primary resistor R₁ incorporated into the housing. ## **Advantages** - Excellent accuracy - Very good linearity - Low thermal drift - High immunity to external interference. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Uninterruptible Power Supplies (UPS) - Power supplies for welding applications. Note: 1) A list of corresponding tests is available 981102/3 ## **Dimensions LV 100-2000** (in mm. 1 mm = 0.0394 inch) #### **Mechanical characteristics** - General tolerance - Fastening - Connection of primary - Connection of secondary - Connection to the ground - Fastening torque - ± 0.3 mm 2 holes Ø 6.5 mm M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft. #### **Remarks** - \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT. - The primary circuit of the transducer must be linked to the connections where the voltage has to be measured. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.