Current Transducer LB 200-S/SP4 For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). $I_{PN} = 200 A$ ### **Electrical data** | I _{PN} I _P R _M | Primary nominal r.m.s. current Primary current, measuring range Measuring resistance | | 200
0 ± 300
\mathbf{R}_{Mmin} \mathbf{R}_{Mmax} | | A
A | |---|--|--|---|----------|-------------------| | | with ± 15 V | @ $\pm 200 \text{ A}_{max}$
@ $\pm 300 \text{ A}_{max}$ | 5
5 | 33
15 | $\Omega = \Omega$ | | I _{SN} | Secondary nominal r.m.s. current | | 200 | 13 | mA | | K _N | Conversion ratio | | 1:100 | 00 | | | v _c | Supply voltage (± 5 %) | | ± 15 | | V | | I _C | Current consumption | | 20 + I _s | : | mΑ | | V _d | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | 6 ¹⁾ | - | kV | | - | | | 1 ²⁾ | | kV | ## Accuracy - Dynamic performance data | $\stackrel{\textbf{X}}{e}_{\scriptscriptstyle L}$ | Overall accuracy @ $\mathbf{I}_{PN,}$ \mathbf{T}_{A} = 25°C Linearity | | ± 0.5 < 0.1 | | %
% | |---|--|----------------------------------|---|-------------------------|-------------------------------| | I _o | 0 | + 20°C + 50°C | Тур | Max
± 0.50
± 0.08 | mA
mA | | t,
di/dt
f | Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) Output noise Magnetization after excursion @ ± Crossing distortion Matching specification | I _{PN}
+ 20°С + 50°С | < 1
> 50
DC 1
< 0.00
< 0.01
neglig
≤ 0.01 | 2 | μs
A/μs
kHz
mA
mA | #### General data | $\mathbf{T}_{_{\mathrm{A}}}$ | Ambient operating temperature | + 20 + 50 | °C | |------------------------------|---|-----------|----| | $T_{\rm s}$ | Ambient storage temperature | - 25 + 85 | °C | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 50°C | 30 | Ω | | m | Mass | 200 | g | | | Standards 4) | EN 50178 | | | | | | | Notes: 1) Between primary and secondary + shield. - ²⁾ Between secondary and shield. - 3) With a di/dt of 100 A/µs - ⁴⁾ A list of corresponding tests is available. #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0. ## Special features - $V_c = \pm 15 \text{ V } (\pm 5 \%)$ - $\mathbf{K}_{N} = 1 : 1000$ - Shield - Negligeable zero crossing distortion - · Low noise electronics - $T_A = +20^{\circ}C ... + 50^{\circ}C$ - Low I_{OT} - Transducers matched based on thermal drift to within $T_A \le 0.01$ mA. ## **Advantages** - Better frequency response - Excellent accuracy - Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - Current overload capability. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 990716/7 ## **Dimensions LB 200-S/SP4** (in mm. 1 mm = 0.0394 inch) ### **Mechanical characteristics** • General tolerance Fastening • Primary through-hole Connection of secondary ± 0.2 mm 2 holes \varnothing 5.5 mm Ø 20 mm Faston 6.3 x 0.8 mm ## **Remarks** - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 70°C - Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.