

Current Transducer LB 200-S/SP4

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 $I_{PN} = 200 A$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		200 0 ± 300 \mathbf{R}_{Mmin} \mathbf{R}_{Mmax}		A A
	with ± 15 V	@ $\pm 200 \text{ A}_{max}$ @ $\pm 300 \text{ A}_{max}$	5 5	33 15	$\Omega = \Omega$
I _{SN}	Secondary nominal r.m.s. current		200	13	mA
K _N	Conversion ratio		1:100	00	
v _c	Supply voltage (± 5 %)		± 15		V
I _C	Current consumption		20 + I _s	:	mΑ
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ¹⁾	-	kV
-			1 ²⁾		kV

Accuracy - Dynamic performance data

$\stackrel{\textbf{X}}{e}_{\scriptscriptstyle L}$	Overall accuracy @ $\mathbf{I}_{PN,}$ \mathbf{T}_{A} = 25°C Linearity		± 0.5 < 0.1		% %
I _o	0	+ 20°C + 50°C	Тур	Max ± 0.50 ± 0.08	mA mA
t, di/dt f	Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) Output noise Magnetization after excursion @ ± Crossing distortion Matching specification	I _{PN} + 20°С + 50°С	< 1 > 50 DC 1 < 0.00 < 0.01 neglig ≤ 0.01	2	μs A/μs kHz mA mA

General data

$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature	+ 20 + 50	°C
$T_{\rm s}$	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 50°C	30	Ω
m	Mass	200	g
	Standards 4)	EN 50178	

Notes: 1) Between primary and secondary + shield.

- ²⁾ Between secondary and shield.
- 3) With a di/dt of 100 A/µs
- ⁴⁾ A list of corresponding tests is available.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $V_c = \pm 15 \text{ V } (\pm 5 \%)$
- $\mathbf{K}_{N} = 1 : 1000$
- Shield
- Negligeable zero crossing distortion
- · Low noise electronics
- $T_A = +20^{\circ}C ... + 50^{\circ}C$
- Low I_{OT}
- Transducers matched based on thermal drift to within $T_A \le 0.01$ mA.

Advantages

- Better frequency response
- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

990716/7

Dimensions LB 200-S/SP4 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Primary through-hole

Connection of secondary

± 0.2 mm

2 holes \varnothing 5.5 mm

Ø 20 mm

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 70°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.