September 2006 # FSB50325S ## **Smart Power Module (SPM)** ### **Features** - 250V 1.5A 3-phase FRFET inverter including high voltage integrated circuit (HVIC) - 3 divided negative dc-link terminals for inverter current sensing applications - HVIC for gate driving and undervoltage protection - 3/5V CMOS/TTL compatible, active-high interface - Optimized for low electromagnetic interference - · Isolation voltage rating of 1500Vrms for 1min. - · Surface mounted device package - · Moisture Sensitive Level 3 ## **General Description** FSB50325S is a tiny smart power module (SPM) based on FRFET technology as a compact inverter solution for small power motor drive applications such as fan motors and water suppliers. It is composed of 6 fast-recovery MOSFET (FRFET), and 3 half-bridge HVICs for FRFET gate driving. FSB50325S provides low electromagnetic interference (EMI) characteristics with optimized switching speed. Moreover, since it employs FRFET as a power switch, it has much better ruggedness and larger safe operation area (SOA) than that of an IGBT-based power module or one-chip solution. The package is optimized for the thermal performance and compactness for the use in the built-in motor application and any other application where the assembly space is concerned. FSB50325S is the most solution for the compact inverter providing the energy efficiency, compactness, and low electromagnetic interference. ## **Absolute Maximum Ratings** | Symbol | Parameter | Conditions | Rating | Units | | |------------------|--|---|----------------|------------------|--| | V_{PN} | DC Link Input Voltage,
Drain-source Voltage of each FRFET | | 250 | V | | | I _{D25} | Each FRFET Drain Current, Continuous | T _C = 25°C | 1.5 | Α | | | I _{D80} | Each FRFET Drain Current, Continuous | T _C = 100°C | 1.0 | Α | | | I _{DP} | Each FRFET Drain Current, Peak | T _C = 25°C, PW < 100μs | 3.0 | Α | | | P _D | Maximum Power Dissipation | T _C = 25°C, Each FRFET | 12 | W | | | V _{CC} | Control Supply Voltage | Applied between V _{CC} and COM | 20 | V | | | V _{BS} | High-side Bias Voltage | Applied between $V_{B(U)}$ -U, $V_{B(V)}$ -V, $V_{B(W)}$ -W | 20 | V | | | V _{IN} | Input Signal Voltage | Applied between IN and COM | -0.3 ~ VCC+0.3 | V | | | TJ | Operating Junction Temperature | | -20 ~ 150 | °C | | | T _{STG} | Storage Temperature | | -50 ~ 150 | °C | | | $R_{ heta JC}$ | Junction to Case Thermal Resistance | Each FRFET under inverter operating condition (Note 1) | 10.2 | °C/W | | | V _{ISO} | Isolation Voltage | 60Hz, Sinusoidal, 1 minute, Connection pins to heatsink | 1500 | V _{rms} | | ## **Pin Descriptions** | Pin Number | Pin Name | Pin Description | | |------------|----------------------|--|--| | 1 | COM | IC Common Supply Ground | | | 2 | V _{B(U)} | Bias Voltage for U Phase High Side FRFET Driving | | | 3 | V _{CC(U)} | Bias Voltage for U Phase IC and Low Side FRFET Driving | | | 4 | IN _(UH) | Signal Input for U Phase High-side | | | 5 | IN _(UL) | Signal Input for U Phase Low-side | | | 6 | NC | No Connection | | | 7 | V _{B(V)} | Bias Voltage for V Phase High Side FRFET Driving | | | 8 | V _{CC(V)} | Bias Voltage for V Phase IC and Low Side FRFET Driving | | | 9 | IN _(VH) | Signal Input for V Phase High-side | | | 10 | IN _(VL) | Signal Input for V Phase Low-side | | | 11 | NC | No Connection | | | 12 | V _{B(W)} | Bias Voltage for W Phase High Side FRFET Driving | | | 13 | V _{CC(W)} | Bias Voltage for W Phase IC and Low Side FRFET Driving | | | 14 | IN _(WH) | Signal Input for W Phase High-side | | | 15 | IN _(WL) | Signal Input for W Phase Low-side | | | 16 | NC | No Connection | | | 17 | Р | Positive DC-Link Input | | | 18 | U, V _{S(U)} | Output for U Phase & Bias Voltage Ground for High Side FRFET Driving | | | 19 | N _U | Negative DC-Link Input for U Phase | | | 20 | N _V | Negative DC–Link Input for V Phase | | | 21 | V, V _{S(V)} | Output for V Phase & Bias Voltage Ground for High Side FRFET Driving | | | 22 | N _W | Negative DC-Link Input for W Phase | | | 23 | W, V _{S(W)} | Output for W Phase & Bias Voltage Ground for High Side FRFET Driving | | Note: Source terminal of each MOSFET is not connected to supply ground or bias voltage ground inside SPM. External connections should be made as indicated in Figure 2 and 5. Figure 1. Pin Configuration and Internal Block Diagram (Bottom View) # $\textbf{Electrical Characteristics} \ \, (T_J = 25^{\circ}\text{C}, \, V_{\text{CC}} = V_{\text{BS}} = 15 \text{V Unless Otherwise Specified}) \\$ Inverter Part (Each FRFET Unless Otherwise Specified) | Symbol | Parameter | Conditions | | Тур | Max | Units | |--------------------------------|---|---|----------------|------|--------|-------| | BV _{DSS} | Drain-Source Breakdown
Voltage | V _{IN} = 0V, I _D = 250μA (Note 2) | | - | - | V | | $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temperature Coefficient | I _D = 250μA, Referenced to 25°C | | 0.31 | - | V | | I _{DSS} | Zero Gate Voltage
Drain Current | V _{IN} = 0V, V _{DS} = 250V | | - | 250 | μΑ | | R _{DS(on)} | Static Drain-Source
On-Resistance | $V_{CC} = V_{BS} = 15V, V_{IN} = 5V, I_D = 1.0A$ | - | 1.4 | 1.8 | Ω | | V_{SD} | Drain-Source Diode
Forward Voltage | $V_{CC} = V_{BS} = 15V, V_{IN} = 0V, I_D = -1.0A$ | | - | 1.2 | V | | t _{ON} | | V _{PN} = 150V, V _{CC} = V _{BS} = 15V, I _D = 1.0A | | 1076 | - | ns | | t _{OFF} | | V _{IN} = 0V ↔ 5V
Inductive load L=3mH
High- and low-side FRFET switching | - | 660 | - | ns | | t _{rr} | Switching Times | | - | 108 | - | ns | | E _{ON} | | | - | 47 | - | μJ | | E _{OFF} | | (Note 3) | | 3.1 | - | μJ | | RBSOA | Reverse-bias Safe Operating Area | V_{PN} = 200V, V_{CC} = V_{BS} = 15V, I_D = I_{DP} , V_{DS} =BV _{DSS} , T_J = 150°C
High- and low-side FRFET switching (Note 4) | 50°C Full Squa | | Square | | ## Control Part (Each HVIC Unless Otherwise Specified) | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | |-------------------|-----------------------------------|---|---|-----|-----|-----|-------| | I _{QCC} | Quiescent V _{CC} Current | V _{CC} =15V, V _{IN} =0V | Applied between V _{CC} and COM | - | - | 160 | μΑ | | I _{QBS} | Quiescent V _{BS} Current | V _{BS} =15V, V _{IN} =0V | Applied between $V_{B(U)}$ -U, $V_{B(V)}$ -V, $V_{B(W)}$ -W | - | - | 100 | μА | | UV _{CCD} | Low-side Undervoltage | V _{CC} Undervoltage Protection Detection Level | | 7.4 | 8.0 | 9.4 | V | | UV _{CCR} | Protection (Figure 6) | V _{CC} Undervoltage Protection Reset Level | | 8.0 | 8.9 | 9.8 | V | | UV _{BSD} | High-side Undervoltage | V _{BS} Undervoltage Protection Detection Level | | 7.4 | 8.0 | 9.4 | V | | UV _{BSR} | Protection (Figure 7) | V _{BS} Undervoltage I | BS Undervoltage Protection Reset Level | | 8.9 | 9.8 | V | | V _{IH} | ON Threshold Voltage | Logic High Level | And Fad hat was a IN and OOM | 3.0 | - | - | V | | V _{IL} | OFF Threshold Voltage | Logic Low Level | Applied between IN and COM | - | - | 0.8 | V | | I _{IH} | Input Pige Current | V _{IN} = 5V | Applied between IN and COM | - | 10 | 20 | μΑ | | I _{IL} | Input Bias Current | V _{IN} = 0V | Applied between IN and COM | - | - | 2 | μА | ### Note: - 1. For the measurement point of case temperature $T_{\mbox{\scriptsize C}},$ please refer to Figure 3 in page 4. - 2. BV_{DSS} is the absolute maximum voltage rating between drain and source terminal of each FRFET inside SPM. V_{PN} should be sufficiently less than this value considering the effect of the stray inductance so that V_{DS} should not exceed BV_{DSS} in any case. - 3. t_{ON} and t_{OFF} include the propagation delay time of the internal drive IC. Listed values are measured at the laboratory test condition, and they can be different according to the field applications due to the effect of different printed circuit boards and wirings. Please see Figure 4 for the switching time definition with the switching test circuit of Figure 5. - 4. The peak current and voltage of each FRFET during the switching operation should be included in the safe operating area (SOA). Please see Figure 5 for the RBSOA test circuit that is same as the switching test circuit. ## **Recommended Operating Conditions** | Symbol | Parameter | Conditions | Value | | | Units | |----------------------|--|--|-------|------|-----------------|--------| | | Parameter | Conditions | Min. | Тур. | Max. | Oiilla | | V _{PN} | Supply Voltage | Applied between P and N | - | 150 | 200 | V | | V _{CC} | Control Supply Voltage | Applied between V _{CC} and COM | 13.5 | 15 | 16.5 | V | | V _{BS} | High-side Bias Voltage | Applied between V _B and output(U, V, W) | 13.5 | 15 | 16.5 | V | | V _{IN(ON)} | Input ON Threshold Voltage | Applied between IN and COM | 3.0 | - | V _{CC} | V | | V _{IN(OFF)} | Input OFF Threshold Voltage | Applied between in and Colvi | 0 | - | 0.6 | V | | t _{dead} | Blanking Time for Preventing Arm-short | V _{CC} =V _{BS} =13.5 ~ 16.5V, T _J ≤ 150°C | 1.0 | - | - | μS | | f _{PWM} | PWM Switching Frequency | $T_J \le 150$ °C | - | 15 | - | kHz | | HIN | LIN | Output | Note | |------|------|-----------------|--------------------| | 0 | 0 | Z | Both FRFET Off | | 0 | 1 | 0 | Low-side FRFET On | | 1 | 0 | V _{DC} | High-side FRFET On | | 1 | 1 | Forbidden | Shoot-through | | Open | Open | Z | Same as (0, 0) | #### Note: - (1) It is recommended the bootstrap diode D₁ to have soft and fast recovery characteristics with 400-V rating - (2) Parameters for bootsrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching frequency, typical example of parameters is shown above. - (3) RC coupling(R₅ and C₅) at each input (indicated as dotted lines) may be used to prevent improper input signal due to surge noise. Signal input of SPM is compatible with standard CMOS or LSTTL outptus. - (4) Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge voltage. Bypass capacitors such as C₁, C₂ and C₃ should have good high-frequency characteristics to absorb high-frequency ripple current. Figure 2. Recommended CPU Interface and Bootstrap Circuit with Parameters Note: Attach the thermocouple on top of the heatsink-side of SPM (between SPM and heatsink if applied) to get the correct temperature measurement. Figure 3. Case Temperature Measurement (a) Turn-on (b) Turn-off Figure 4. Switching Time Definition Figure 5. Switching and RBSOA(Single-pulse) Test Circuit (Low-side) Figure 6. Undervoltage Protection (Low-side) Figure 7. Undervoltage Protection (High-side) Figure 8. Example of Application Circuit # **Detailed Package Outline Drawings** LAND PATTERN RECOMMENDATIONS ## **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. | Bottomless TM FPS TM CoolFET TM FRFET TM CROSSVOLT TM GlobalOptoisolator TM DOME TM GTO TM EcoSPARK TM HiSeC TM E ² CMOS TM I ² C TM EnSigna TM i-Lo TM FACT TM ImpliedDisconnect TM FACT Quiet Series TM Across the board. Around the world. TM | MICROCOUPLERTM MicroFETTM MicroPakTM MICROWIRETM MSXTM MSXProTM OCXTM OCXTM OCXProTM OPTOLOGIC® | PowerSaver TM PowerTrench [®] QFET [®] QS TM QT Optoelectronics TM Quiet Series TM RapidConfigure TM RapidConnect TM µSerDes TM | SuperSOTTM-3 SuperSOTTM-6 SuperSOTTM-8 SyncFETTM TinyLogic® TINYOPTOTM TruTranslationTM UHCTM UltraFET® | |--|---|--|---| | The Power Franchise® | OPTOPLANAR™
PACMAN™ | SILENT SWITCHER [®]
SMART START™ | UniFET™ | | Programmable Active Droop™ | FACIVIAIN | SWART START | VCX™ | #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. ### **LIFE SUPPORT POLICY** FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### **PRODUCT STATUS DEFINITIONS** ### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or In
Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. | Rev. I15