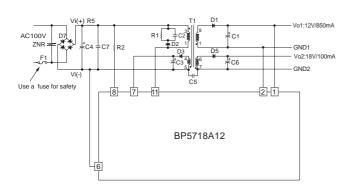
Insulation Type AC-DC Converter

BP5718A12

AC 100V input, 12 V/1000 mA output

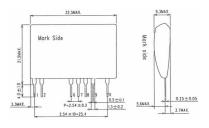
Absolute Maximum Ratings

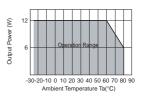

Parameter	Symbol	Limits	Unit	Conditions
Pin 11 input voltage	VD	500	V	
Pin 7,9 input voltage	VDD	25	V	
Pin 11 input Current	ID	500	mA	
Pin 8 input Current	IDD	10	mA	
Output power	Po	13	W	
Withstand voltage	VI	2.5	KV	1 sec (between primary and secondary)
Maximum allowable surface temperature	Tcmax	105	°C	Ambient temperature + module self-heating ≤ Tcmax
Operating temperature range	Topr	-25 to +80	°C	· ·
Storage temperature range	Tstg	-40 to +105	°C	

Electrical Characteristics

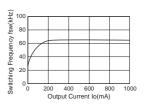
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Pin 11 input voltage	VD	_	_	350	V	Note 2:lo=1000mA
Operating power voltage(Pin 7)	VDD	8.8	12	20	V	DC, Io=1000mA *1
Rated output voltage	Vo	11.4	12.0	12.6	V	
Rated output current	lo	0	_	1000	mA	See derating curve
Line regulation	ΔVr	-	5	200	mV	Vi=113V to 195VDC Io=1000mA
Load regulation	ΔVI	_	58	200	mV	Io=50mA to 1000mA
Output ripple voltage	Δγ	_	135	500	mVpp	*2
Power conversion efficiency	η	75	83	_	%	

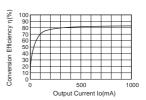
- *1: The operation starting voltage is between 15.5 and 17.5 V.
- *2: Pulsating noise is not included.


Sample Application Circuit


Pin No.	Terminal name	Terminal function Secondary 12V output voltage control terminal. Insert a 1000µF output smoothing capacitor before the GND for use.		
1	Vo			
2	GND	Secondary 12V output GND terminal.		
6	Vin(-)	Primary input negative terminal.		
7	VDD	Internal circuit power terminal.		
8	Vs	Start-up terminal. Connect to Vi (+) through an external resistor (1.5M Ω).		
9	NC	NC pin.		
11	VD	Drain terminal for the built-in FET.		

Verify proper operation under actual conditions before use. In particular, confirm that the load current does not exceed the maximum


Dimensions (mm)

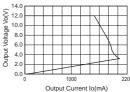

Derating Curve

Switching Frequency

Conversion Efficiency

External Component Settings

C1: Output Capacitor	1000μF/35V low-impedance	D3: Rectifier Diode	80V/0.1A
	capacitor for power supply	D5: Rectifier Diode	100V/1A
C2: Noise Reduction Capacitor	2200pF/400V	D7: Diode Bridge	800V/1A
C3: VDD Capacitor	10μF/50V low-impedance capacitor for power supply	R1: Resistor 1	100kΩ±5%, 3W, 300VDC or higher ruted voltage
C4: Input Capacitor	100μF/250V	R2: Resistor 2	1.5MΩ±5%, 0.25W, 300VDC or
C5: Noise Reduction Capacitor	(optional)		higher ruted voltage.
C6: Output Capacitor	100μF/35V low-impedance	R5: Noise Reduction Resistor	(optional)
C7: Noise Reduction Capacitor	(optional)	T1: Switching Transformer	
D1: Rectifier Diode	60V/6A	F1: Fuse	Use a fuse for safety
D2: Rectifier Diode	1kV/1A	ZNR: Varistor	A varistor is required in order to protect against lightning surges a


Operation Notes

6.0

static electricity.

- An excessively large capacitance at C1 may cause the output to become inactive. Therefore, a capacitance between 1000 and 2200μF is recommended, with a rise time of 10ms or less.
- The capacitance of C3 should be 10μF, since an excessively small value will result in malfunction. The activation time is defined as: t(sec)=R2×C3×In[1-17/(VI-30μA×R2)], where VI is the DC voltage after smoothing.
- lacktriangle The resistance of R2 should be 1.5M Ω , since an excessively small value will result in malfunction.
- Overcurrent (reset type) and overvoltage (latch type) protection circuits are built in, preventing damage from occurring due to unexpected conditions. The overvoltage protection circuit shuts down operation once VDD exceeds 20V. In order to reset the input capacitor C4 must be discharged and the power turned back on.

Load Regulation

Power Module Usage Precautions

Safety Precautions

- 1) The products are designed and manufactured for use in ordinary electronic equipment (i.e. AV/OA/ telecommunication/amusement equipment, home appliances). Please consult with the Company's (ROHM) sales staff if intended for use in devices requiring high reliability (e.g. medical/transport/ aircraft/spacecraft equipment, nuclear power/fuel controllers, automotive/safety devices) and whose malfunction may result in injury or death. In this case, failsafe measures must be taken, including the following:
 - [a] Installation of protection circuits in order to improve system safety
 - [b] Incorporation of redundant circuits in the case of single-circuit failure
- 2) The products are designed for use under normal conditions. Application in special environments can cause a deterioration in product performance. Therefore, verification and confirmation of product performance, prior to use, is recommended. The following environments are considered to be 'special':
 - [a] Outdoors, exposed to direct sunlight or dust
 - [b] In contact with liquids, such as water, oils, chemicals, or organic solvents
 - [c] In areas where exposure to the sea air or corrosive gases (i.e. Cl₂, H₂S, NH₃, SO₂, NO₂) can occur
 - [d] In places where the products may be in contact with static electricity or electromagnetic waves
 - [e] In proximity to heat-producing items, plastic cords, or flammable materials
 - [f] In contact with sealing or coating products, such as resin
 - [g] In contact with unclean solder or exposed to water or water-soluble cleaning agents used after soldering
 - [h] In areas where dew condensation occurs
- 3) The products are not designed to be radiation resistant
- 4) The Company is not responsible for any problems resulting from use of the products under conditions not recommended herein.
- 5) The Company should be notified of any product safety issues. Moreover, product safety issues should be periodically monitored by the customer.

Application Notes

- A sufficient margin must be allowed if changes are made to the peripheral circuit due to variations in the inherent tolerances of the external components as well as transient and static characteristics. In addition, please be aware that the Company has not conducted investigations on whether or not particular changes in the example application circuits would result in patent infringement.
- 2) The application examples, their constants, and other types of information contained herein are applicable only when the products are used in accordance with standard methods.
 - Therefore, if mass production is intended, sufficient consideration to external conditions must be made.

Notes Regarding Industrial Property /

- 1) The specifications included herein contain information related to the Company's industrial property. Their use other than pertaining to the relevant products is forbidden. Duplication and/or disclosure to a third party without express written permission is strictly prohibited.
- 2) Product information and data, including application examples, contained in the specifications are for reference purposes only; the Company does not guarantee the industrial/intellectual property rights or any other rights of a third party. Accordingly, the Company shall not bear responsibility for:
 - [a] Infringement of the intellectual property rights of a third party
 - [b] Problems arising from the use of the products listed herein
- 3) The Company prohibits the purchaser from exercising or using the intellectual/industrial property rights or any rights belonging to or are controlled by the Company, other than the right to use, sell, or dispose of the products.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

