

VHF variable capacitance diode

FEATURES

- · High linearity
- · Excellent matching to 2% DMA
- · Ultra small plastic SMD package
- · C25: 2.8 pF; ratio: 17
- · Low series resistance.

APPLICATIONS

- · Electronic tuning in VHF television tuners, band A up to 160 MHz
- \cdot Voltage controlled oscillators (VCO).

DESCRIPTION

The BB182B is a planar technology variable capacitance diode, in a SOD523 (SC-79) package. The excellent matching performance is achieved by gliding matching and a direct matching assembly procedure.

BB 182B

LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _R	continuous reverse voltage		_	34	V
V _{RM}	peak reverse voltage	in series with a 10 $k\Omega$ resistor	_	35	V
I _F	continuous forward current		-	20	mA
T stg	storage temperature		-55	+150	°C
T j	operating junction temperature		-55	+125	°C

ELECTRICAL CHARACTERISTICS T_j=25°C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	TYP.	UNIT
I _R	reverse current	$V_R = 32 V$; see Fig.2	_	_	10	nA
		$V_R = 32 \text{ V}; T_j = 85^{\circ}\text{C}; \text{ see Fig.2}$	_	_	200	nA
r s	diode series resistance	$f = 470 \text{ MHz}; V_R = 5V$	-	-	1.1	Ω
C d	diode capacitance	$V_R = 2 V$; $f = 1 MHz$; see Figs 1and 3	47	_	53	pF
		$V_R = 25 V$; f = 1 MHz; see Figs 1and 3	2.65	_	3	pF
$\frac{C_{d(2V)}}{C_{d(25V)}}$	capacitance ratio	f = 1 MHz	17	-	-	
$\frac{\Delta C_d}{C_d}$	capacitance matching	V_R = 2 to 25 V; in a sequence of 15 diodes(gliding)	_	_	2	%

BB 182B

Fig.1 Diode capacitance as a function of reverse voltage; typical values.

Fig.2 Reverse current as a function of junction temperature; maximum values.

Fig.3 Temperature coefficient of diode capacitance as a function of reverse voltage; typical values.