EPCOS

IF Filters for Cordless Phones and ISM-Band Application

Series/Type: B8100

The following products presented in this data sheet are being withdrawn.

Ordering Code	Substitute Product	Date of Withdrawal	Deadline Last Orders	Last Shipments
B39111B8100L100	B39111B4542Z910	$2004-05-19$	$2004-09-30$	$2004-12-31$

For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of our worldwide sales network are presented at www.epcos.com/sales.

Withdrawn Products

The following products presented in this data sheet are being withdrawn:
B39111B8100L100
Date of withdrawal: 19-MAY-04
Deadline for last orders: 30-SEP-04
Last shipments: 31-DEC-04
For further information please contact your nearest EPCOS sales office, which will also support you in selecting a suitable substitute. The addresses of the sales offices are given on the Internet at www.epcos.com/sales.

EPCOS

SAW Components

Data Sheet B 8100

Data Sheet

SAW Components

Data Sheet
duroplast package DIP18D

Features

- IF filter for cordless application
- Channel selection in DECT system
- Low group delay ripple
- Surface Mounted Technology (SMT)
- Standard IC small outline (SO) package
- Balanced and unbalanced operation possible

Terminals

- Tinned CuFe alloyv

Dimensions in mm, approx. weight $0,4 \mathrm{~g}$

Pin configuration

$7 \quad$ Input
$8 \quad$ Input ground or balanced input
16 Output
17 Output ground or balanced output
1,4,5,6,9,10
Chip carrier - ground
13,14,15,18
2,3,11,12 not connected

Type	Ordering code	Marking and Package according to	Packing according to
B8100	B39111-B8100-L100	C61157-A2-A4	F61074-V8058-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T	$-25 /+65$	${ }^{\circ} \mathrm{C}$	
Storage temperature range	$T_{\text {stg }}$	$-40 /+85$	${ }^{\circ} \mathrm{C}$	
DC voltage	V_{DC}	5	V	
Source power	P_{s}	10	dBm	

SAW Components

Data Sheet

Characteristics

Operating temperature range:
Terminating source impedance:
Terminating load impedance:

$$
\begin{aligned}
& T=+25^{\circ} \mathrm{C} \\
& Z_{\mathrm{S}}=50 \Omega\left(600 \Omega \| 240 \mathrm{nH}^{*}\right) \\
& Z_{\mathrm{L}}=50 \Omega\left(140 \Omega \| 110 \mathrm{nH}^{*}\right)
\end{aligned}
$$

		min.	typ.	max.				
Nominal frequency	f_{N}	-	110,59	-	MHz			
Center frequency (center frequency between 10 dB points)	$f_{\text {c }}$	110,48	110,59	110,70	MHz			
Insertion attenuation at $\boldsymbol{f}_{\mathrm{N}}$ (including losses in matching network)	α_{N}	-	$\begin{gathered} 20,9 \\ \left(13,5^{*}\right) \end{gathered}$	$\begin{gathered} 22,4 \\ \left(15,0^{\star}\right) \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$			
Passband width	$\begin{aligned} & B_{3 \mathrm{~dB}} \\ & B_{30 \mathrm{~dB}} \end{aligned}$	-	1,28 2,40	-	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$			
Group delay ripple ($p-p$) $f_{\mathrm{N}}-600 \mathrm{kHz} \quad \ldots \quad f_{\mathrm{N}}+600 \mathrm{kHz}$	$\Delta \tau$	-	$\begin{gathered} 180 \\ \left(300^{*}\right) \end{gathered}$	$\begin{aligned} & 250 \\ & \left(400^{*}\right) \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$			
Relative attenuation (relative to α_{N}) $\begin{array}{lll} f_{\mathrm{N}}-576 \mathrm{kHz} & \ldots & f_{\mathrm{N}}+576 \mathrm{kHz} \\ f_{\mathrm{N}} \pm 576 \mathrm{kHz} & \ldots & f_{\mathrm{N}} \pm 700 \mathrm{kHz} \end{array}$	$\alpha_{\text {rel }}$	-	2,0	4,0 10,0	dB			
$f_{\mathrm{N}} \pm 1,6 \mathrm{MHz} \quad \ldots \quad f_{\mathrm{N}} \pm 3,1 \mathrm{MHz}$		32	38	-	dB			
$f_{\mathrm{N}} \pm 3,1 \mathrm{MHz} \quad \ldots \quad f_{\mathrm{N}} \pm 4,6 \mathrm{MHz}$		40	44	-	dB			
$f_{\mathrm{N}} \pm 4,6 \mathrm{MHz} \quad \ldots \quad f_{\mathrm{N}} \pm 20 \mathrm{MHz}$		45	50	-	dB			
$f_{\mathrm{N}} \pm \quad 1,728 \mathrm{MHz}$		32	38	-	dB			
$f_{\mathrm{N}} \pm 2 \times 1,728 \mathrm{MHz}$		42	47	-	dB			
$\mathrm{f}_{\mathrm{N}} \pm 3 \times 1,728 \mathrm{MHz}$		48	53	-	dB			
Impedance at f_{N}								
Input: $\quad Z_{\text {IN }}=R_{\text {IN }} \quad \\| C_{\text {IN }}$		-	600 \|	8,5	-	$\Omega \\| \mathrm{pF}$		
Output: $Z_{\text {OUT }}=R_{\text {OUT }} \\| C_{\text {OUT }}$		-	140 \|	19,0	-	$\Omega \\| \mathrm{pF}$		
Temperature coefficient of frequency	TC ${ }_{\text {f }}$	-	-18	-	ppm/K			

*) with matching network to 50Ω (element values depend on PCB layout):

$\mathrm{C}_{\mathrm{p} 1}=0 \mathrm{pF}$
$\mathrm{L}_{\mathrm{s} 2}=220 \mathrm{nH}$
$\mathrm{L}_{\mathrm{s} 3}=120 \mathrm{nH}$
$\mathrm{C}_{\mathrm{p} 4}=22 \mathrm{pF}$

3 May 08, 2001

Data Sheet

Transfer function:

Transfer function (pass band):

SAW Components
Bandpass Filter
110,59 MHz
Data Sheet

Recommended Pin Configurations:

For optimum performance use the following pin configurations.

Balanced-balanced operation:

Balanced-unbalanced operation:

Unbalanced-unbalanced operation

Data Sheet

Matching Stability / Variation of the Matching Network:

All matching-elements changed by $\pm 10 \%$ (simulation).

Transfer function of matched filter $\left(\mathrm{S}_{21}\right)$:

Impedance variation of matched filter (in passband):

