

AZ358/358C

General Description

The AZ358/358C consists of two independent, high gain and internally frequency compensated operational amplifiers, it is specifically designed to operate from a single power supply. Operation from split power supply is also possible and the low power supply current drain is independent of the magnitude of the power supply voltages.

The AZ358/358C series are Compatible with Industry standard 358. AZ358C has more stringent input offset voltage than AZ358.

The AZ358/358C series are available in standard packages of DIP-8 and SOIC-8.

Features

- Internally Frequency Compensated for Unity Gain
- Large Voltage Gain: 100dB (Typical)
- Low Input Bias Current: 20nA (Typical)
- Low Input Offset Voltage: 2mV (Typical)
- Low Supply Current: 0.5mA (Typical)
- Wide Power Supply Voltage Range:

Single Supply: 3V to 18V Dual Supplies: ±1.5V to ±9V

- Input Common Mode Voltage Range Includes Ground
- Large Output Voltage Swing: 0V to V_{CC}-1.5V
- Power Drain Suitable for Battery Operation

Applications

- Battery Charger
- Cordless Telephone
- · Switching Power Supply

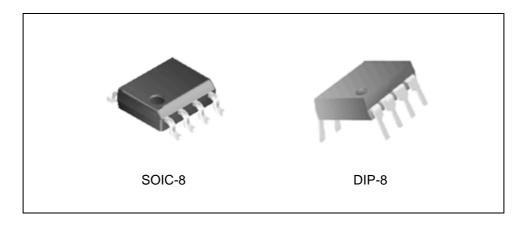


Figure 1. Package Types of AZ358/358C

AZ358/358C

Pin Configuration

M Package/P Package (SOIC-8/DIP-8)

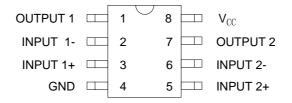


Figure 2. Pin Configuration of AZ358/358C (Top View)

Functional Block Diagram

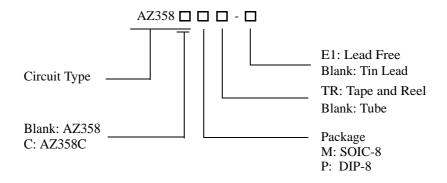



Figure 3. Functional Block Diagram of AZ358/358C (Each Amplifier)

AZ358/358C

Ordering Information

Package	Input Offset Voltage		Part 1	Number	Mark	Packing Type		
			Tin Lead	Lead Free	Tin Lead	Lead Free	1 acking Type	
SOIC-8	Maximum Value	5mV	AZ358M	AZ358M-E1	AZ358M	AZ358M-E1	Tube	
		5mV	AZ358MTR	AZ358MTR-E1	AZ358M	AZ358M-E1	Tape & Reel	
		3mV	AZ358CM	AZ358CM-E1	358CM	358CM-E1	Tube	
		3mV	AZ358CMTR	AZ358CMTR-E1	358CM	358CM-E1	Tape & Reel	
DIP-8	Maximum Value	5mV	AZ358P	AZ358P-E1	AZ358P	AZ358P-E1	Tube	
		3mV	AZ358CP	AZ358CP-E1	AZ358CP	AZ358CP-E1	Tube	

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

Advanced Analog Circuits Data Sheet

LOW POWER DUAL OPERATIONAL AMPLIFIERS

AZ358/358C

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit	
Power Supply Voltage	V_{CC}	20		V	
Differential Input Voltage	V_{ID}	20		V	
Input Voltage	V _{IC}	-0.3 to 20		V	
Input Current (V _{IN} <-0.3V) (Note 2)	I_{IN}	50		mA	
Output Short Circuit to Ground (One Amplifier) (Note 3) $V_{CC} \le 12V$ and $T_A = 25^{\circ}C$		Conti	nuous		
Power Dissipation (T =259C)	P_{D}	DIP-8	830	mW	
Power Dissipation (T _A =25°C)		SOIC-8	550] """	
Operating Junction Temperature	T_{J}	150		°C	
Storage Temperature Range	T _{STG}	-65 to 150		°C	
Lead Temperature (Soldering, 10 Seconds)	T_{LEAD}	260		°C	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device under these conditions is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the op amps to go to the V_{CC} voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3V (at $25^{\circ}C$)

Note 3: Short circuits from the output to V_{CC} can cause excessive heating and eventual destruction. When considering short circuits to ground, the maximum output current is approximately 40mA independent of the magnitude of V_{CC} . At values of supply voltage in excess of +12V, continuous short circuits can exceed the power dissipation ratings and cause eventual destruction. Destructive dissipation can result from simultaneous shorts on all amplifiers.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V _{CC}	3	18	V
Ambient Operating Temperature Range	T_A	-40	85	°C

Advanced Analog Circuits Data Sheet

Electrical Characteristics

 V_{CC} =5V, GND=0, T_A =25°C unless otherwise specified.

LOW POWER DUAL OPERATIONAL AMPLIFIERS

Parameter		Symbol	Test Conditions		Min	Typ	Max	Unit
Input Offset Voltage		V _{IO}	$V_{O}=1.4V, R_{S}=0\Omega,$	AZ358		2 5	5	mV
			V _{CC} =5V to 15V	AZ358C		2	3	III V
Input Bias Current (Note 4)		I _{BIAS}	I_{IN} + or I_{IN} -, V_{CM} =0V			20	200	nA
Input Offset Curre	nt	I_{IO}	I_{IN} +- I_{IN} -, V_{CM} =0 V			5	50	nA
Input Common Mode Voltage Range (Note 5)		V _{IR}	V _{CC} =15V		0		V _{CC} -1.5	V
Supply Current	Supply Current		$R_L=\infty$, Over full temperature	V _{CC} =15V		0.7	1.5	- mA
Supply Current			range on all OP Amps	V _{CC} =5V		0.5	1.2	
Large Signal Voltage Gain		G_{V}	V_{CC} =15V, R_L \ge 2K Ω , V_O =1V to 11V		85	100		dB
Common Mode Rejection Ratio		CMRR	V _{CM} =0V to (V _{CC} -1.5)V		70	90		dB
Power Supply Rejection Ration		PSRR	V _{CC} =5V to 15V		70	90		dB
Channel Separation (Note 6)		CS	f=1KHz to 20KHz			-120		dB
	Source	I _{SOURCE}	V_{IN} +=1V, V_{IN} -=0V, V_{CC} =15V	, V _O =2V	20	40		mA
Output Current	Sink	I _{SINK}	V _{IN} +=0V, V _{IN} -=1V, V _{CC} =15V, V _O =2V		10	18		mA
			V _{IN} +=0V, V _{IN} -=1V, V _{CC} =15V, V _O =0.2V		12	50		μА
Output Short Ground	Circuit to	I _{SC}	V _{CC} =15V			40	60	mA
Output Voltage Swing		V _{OH}	V_{CC} =15V, R_L =2K Ω	5V, R_L =2K Ω				V
			V_{CC} =15V, R_L =10K Ω		12.5	13.5		v
		V _{OL}	V_{CC} =5V, R_L =10K Ω		5	20	mV	

Note 4: The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines.

Note 5: The input common-mode voltage of either input signal voltage should not be allowed to go negatively by more than 0.3V (at 25° C). The upper end of the common-mode voltage range is V_{CC} -1.5V (at 25° C), but either or both inputs can go to +18V without damages, independent of the magnitude of the V_{CC} .

Note 6: Due to proximity of external components, insure that coupling is not originating via stray capacitors between these external parts. This typically can be detected as this type of capacitance increases at higher frequencies.

AZ358/358C

AZ358/358C

Typical Performance Characteristics

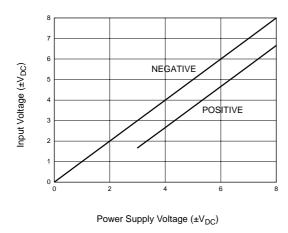


Figure 4. Input Voltage Range

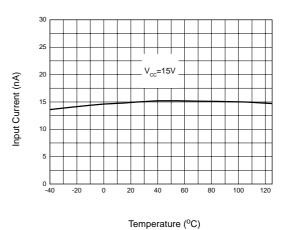


Figure 5. Input Current

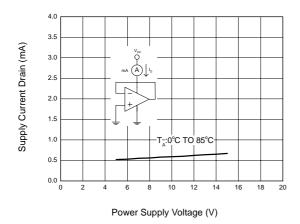


Figure 6. Supply Current

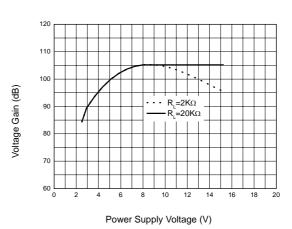


Figure 7. Voltage Gain

AZ358/358C

Typical Performance Characteristics (Continued)

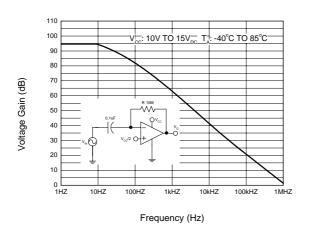


Figure 8. Open Loop Frequency Response

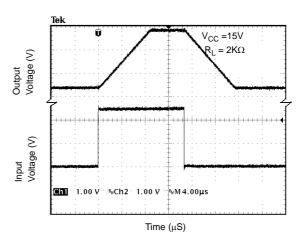


Figure 9. Voltage Follower Pulse Response

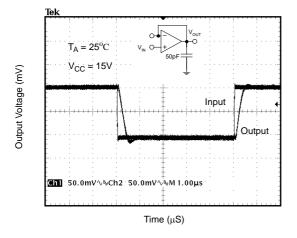


Figure 10. Voltage Follower Pulse Response (Small Signal)

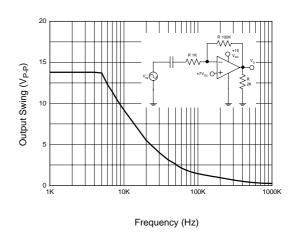


Figure 11. Large Signal Frequency Response

AZ358/358C

Typical Performance Characteristics (Continued)

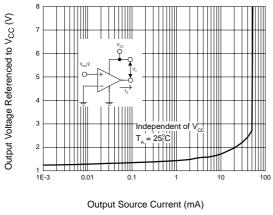


Figure 12. Output Characteristics Current Sourcing

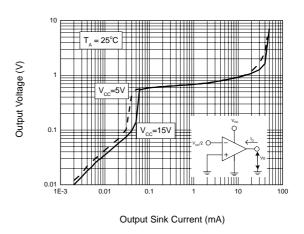


Figure 13. Output Characteristics Current Sinking

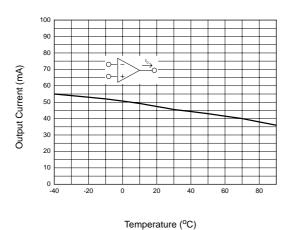


Figure 14. Current Limiting

AZ358/358C

Typical Application

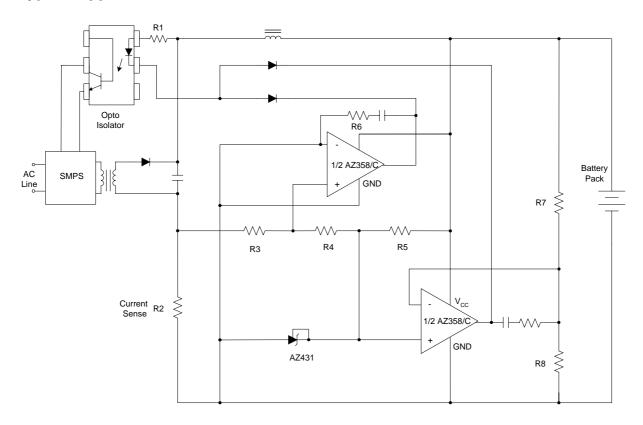


Figure 15. Battery Charger

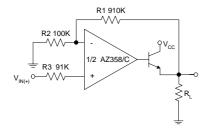


Figure 16. Power Amplifier

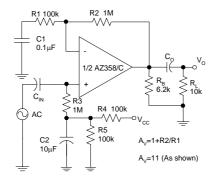



Figure 17. DC Summing Amplifier

AZ358/358C

Typical Application (Continued)

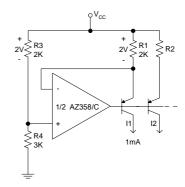
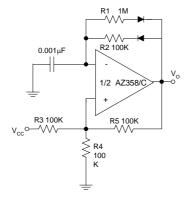
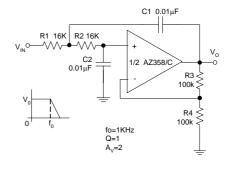
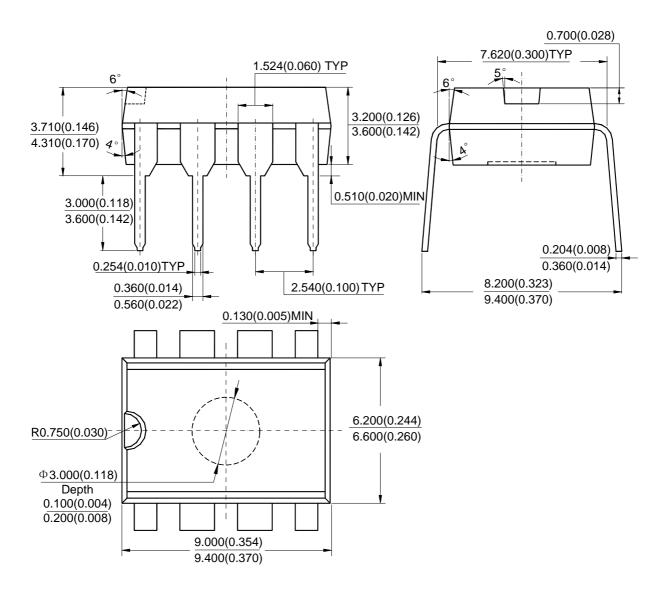



Figure 18. AC Coupled Non-Inverting Amplifier

Figure 19. Fixed Current Sources

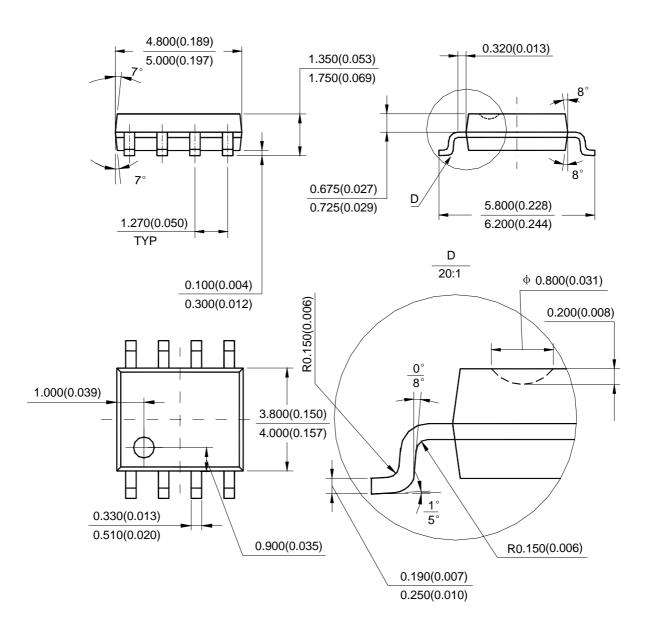



Figure 21. DC Coupled Low-Pass Active Filter

AZ358/358C

Mechanical Dimensions

DIP-8 Unit: mm(inch)



AZ358/358C

Mechanical Dimensions (Continued)

SOIC-8 Unit: mm(inch)

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

BCD Semiconductor Manufacturing Limited
- Wafer Fab
Shanghai SIM-BCD Semiconductor Manufacturing Limited

Shanghai SIM-BCD Semiconductor Manufacturing Limited 800, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen Office Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office 27B, Tower C, 2070, Middle Shen Nan Road, Shenzhen 518031, China Tel: +86-755-8368 3987, Fax: +86-755-8368 3166 BCD Semiconductor Manufacturing Limited

- IC Design Group Advanced Analog Circuits (Shanghai) Corporation 8F, Zone B, 900, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan

Tel: +886-2-2656 2808, Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corporation 3170 De La Cruz Blvd., Suite 105, Santa Clara, CA 95054-2411, U.S.A Tel: +1-408-988 6388, Fax: +1-408-988 6386