

APT12040L2LL

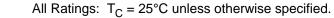
1200V 30A 0.400Ω

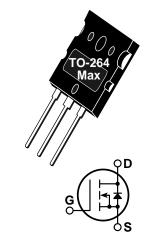
POWER MOS 7™

Power MOS 7^{TM} is a new generation of low loss, high voltage, N-Channel enhancement mode power MOSFETS. Both conduction and switching losses are addressed with Power MOS 7^{TM} by significantly lowering $R_{\text{DS(ON)}}$ and Q_g . Power MOS 7^{TM} combines lower conduction and switching losses along with exceptionally fast switching speeds inherent with APT's patented metal gate structure.

• Lower Input Capacitance

Increased Power Dissipation


• Lower Miller Capacitance


• Easier To Drive

Lower Gate Charge, Qg

MAXIMUM RATINGS

• Popular TO-264 MAX Package

Symbol	Parameter	APT12040L2LL	UNIT		
V _{DSS}	Drain-Source Voltage	1200	Volts		
I _D	Continuous Drain Current @ T _C = 25°C	30	Amps		
I _{DM}	Pulsed Drain Current ①	120			
V _{GS}	Gate-Source Voltage Continuous	±30	Valta		
V _{GSM}	Gate-Source Voltage Transient	±40	Volts		
P _D	Total Power Dissipation @ T _C = 25°C	890	Watts		
' D	Linear Derating Factor	7.12	W/°C		
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C		
T _L	Lead Temperature: 0.063" from Case for 10 Sec.	300] [
I _{AR}	Avalanche Current (Repetitive and Non-Repetitive)	30	Amps		
E _{AR}	Repetitive Avalanche Energy ①	50			
E _{AS}	Single Pulse Avalanche Energy ^④	3200	- mJ		

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{DSS}	Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250\mu\text{A})$	1200			Volts
I _{D(on)}	On State Drain Current ② $(V_{DS} > I_{D(on)} \times R_{DS(on)} Max, V_{GS} = 10V)$	30			Amps
R _{DS(on)}	Drain-Source On-State Resistance (V _{GS} = 10V, 0.5 I _{D[Cont.]})			0.400	Ohms
I _{DSS}	Zero Gate Voltage Drain Current (V _{DS} = V _{DSS} , V _{GS} = 0V)			100	μА
	Zero Gate Voltage Drain Current (V _{DS} = 0.8 V _{DSS} , V _{GS} = 0V, T _C = 125°C)			500	
I _{GSS}	Gate-Source Leakage Current (V _{GS} = ±30V, V _{DS} = 0V)			±100	nA
V _{GS(th)}	Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 5mA)$	3		5	Volts

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

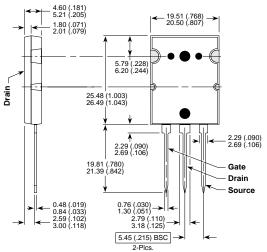
USA 405 S.W. Columbia Street EUROPE Chemin de Magret Bend, Oregon 97702-1035 F-33700 Merignac - France Phone: (541) 382-8028 Phone: (33) 5 57 92 15 15 FAX: (541) 388-0364 FAX: (33) 5 56 47 97 61

DYNAMIC CHARACTERISTICS

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{iss}	Input Capacitance	V _{GS} = 0V		8690		
C _{oss}	Output Capacitance	V _{DS} = 25V		1200		pF
C _{rss}	Reverse Transfer Capacitance	f = 1 MHz		908		
Q_g	Total Gate Charge ^③	V _{GS} = 10V		306		
Q _{gs}	Gate-Source Charge	$V_{DD} = 0.5 V_{DSS}$		37		nC
Q_{gd}	Gate-Drain ("Miller") Charge	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$		182		
t _{d(on)}	Turn-on Delay Time	V _{GS} = 15V		21		
t _r	Rise Time	$V_{DD} = 0.5 V_{DSS}$		14		ns
t _{d(off)}	Turn-off Delay Time	$I_{D} = I_{D[Cont.]} @ 25^{\circ}C$		67		113
t _f	Fall Time	$R_G = 0.6\Omega$		24		

SOURCE-DRAIN DIODE RATINGS AND CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
I _s	Continuous Source Current (Body Diode)			30	A
I _{SM}	Pulsed Source Current (1) (Body Diode)			120	Amps
V _{SD}	Diode Forward Voltage ② (V _{GS} = 0V, I _S = -I _{D[Cont.]})			1.3	Volts
t rr	Reverse Recovery Time $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		1250		ns
Q _{rr}	Reverse Recovery Charge $(I_S = -I_{D[Cont.]}, dI_S/dt = 100A/\mu s)$		31.0		μC
dv/ _{dt}	Peak Diode Recovery dv/ _{dt} (5)			10	V/ns


THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{ hetaJC}$	Junction to Case			0.14	°C/W
$R_{\theta JA}$	Junction to Ambient			40	C/VV

¹ Repetitive Rating: Pulse width limited by maximum junction temperature.

APT Reserves the right to change, without notice, the specifications and information contained herein.

TO-264 MAX™(L2) Package Outline

Dimensions in Millimeters and (Inches)

² Pulse Test: Pulse width < 380 µs, Duty Cycle < 2%

③ See MIL-STD-750 Method 3471

⁴ Starting $T_i = +25$ °C, L = 7.11mH, $R_G = 25Ω$, Peak $I_L = 30A$

⁽⁵⁾ $^{dv}/_{dt}$ numbers reflect the limitations of the test circuit rather than the device itself. $^{l}_{S} \le ^{-l}_{D[Cont.]}$ $^{di}/_{dt} \le 700 \text{A/µs}$ $^{l}_{R} \le ^{l}_{DSS}$ $^{r}_{J} \le 150 ^{\circ}\text{C}$