QUAD/DUAL EPAD® PRECISION MATCHED PAIR N-CHANNEL MOSFET ARRAY ### **FEATURES** - Electrically Programmable Analog Device CMOS Technology - Operates from 2V, 3V, 5V to 10V - Flexible basic circuit building block and design element - Very high resolution -- average e-trim voltage resolution of 0.1mV - Wide dynamic range -- current levels from 0.1μA to 3000μA - Voltage adjustment range from 1.000V to 3.000V in 0.1mV steps - · Proven, non-volatile CMOS technology - Typical 10 years drift of less than 2mV - Usable in voltage mode or current mode - High input impedance -- 10¹²Ω - Very high DC current gain -- greater than 109 - Device operating current has positive temperature coefficient range and negative temperature coefficient range with cross-over zero temperature coefficient current level at 68µA - Tight matching and tracking of on-resistance between different devices with e-trim - Wide dynamic resistance matching range - Very low input currents and leakage currents - Low cost, monolithic technology - Application-specific or in-system programming modes - Optional user software-controlled automation - Optional e-trim of any standard/custom configuration - Micropower operation - Available in standard PDIP, SOIC and hermetic CDIP packages - Suitable for matched-pair balanced circuit configuration - Suitable for both coarse and fine trimming as well as matched MOSFET array applications ### **ORDERING INFORMATION** | Operating Temperature Range* | | | | | | | | | |----------------------------------|---------------------------|--|--|--|--|--|--|--| | 0°C to +70°C 0°C to +70°C | | | | | | | | | | 16-Pin
Plastic Dip
Package | 16-Pin
SOIC
Package | | | | | | | | | ALD1123E PC | ALD1123E SC | | | | | | | | | Operating Temperature Range* | | | | | | | | | |---------------------------------|--------------------------|--|--|--|--|--|--|--| | 0°C to +70°C 0°C to +70°C | | | | | | | | | | 8-Pin
Plastic Dip
Package | 8-Pin
SOIC
Package | | | | | | | | | ALD1121E PA | ALD1121E SA | | | | | | | | ^{*} Contact factory for industrial temperature range ### **BENEFITS** - Precision matched electrically after packaging - Simple, elegant single-chip user option to trimming voltage/current values - Excellent device matching characteristics with or without additional electrical trim - Remotely and electrically trim parameters on circuits that are physically inaccessible - Usable in environmentally sealed circuits - No mechanical moving parts -- high G-shock tolerance - Improved reliability, dependability, dust and moisture resistance - · Cost and labor savings - Small footprint for high board density applications ### **PIN CONFIGURATION** ### **PIN CONFIGURATION** ### **APPLICATIONS** - Precision PC-based electronic calibration - · Automated voltage trimming or setting - Remote voltage or current adjustment of inaccessible nodes - PCMCIA based instrumentation trimming - · Electrically adjusted resistive load - Temperature compensated current sources and current mirrors - Electrically trimmed/calibrated current sources - Permanent precision preset voltage level shifter - Low temperature coefficient voltage and/or current bias circuits - Multiple preset voltage bias circuits - Multiple channel resistor pull-up or pull-down circuits - · Microprocessor based process control systems - Portable data acquisition systems - · Battery operated terminals and instruments - Remote telemetry systems - E-trim gain amplifiers - Low level signal conditioning - Sensor and transducer bias currents - Neural networks ### **BLOCK DIAGRAM** ### **BLOCK DIAGRAM** ### **GENERAL DESCRIPTION** ALD1123E/ALD1121E are monolithic quad/dual EPAD[®] (Electrically Programmable Analog Device) N-channel MOSFETs with electrically adjustable threshold (turn-on) voltage. The ALD1123E/ALD1121E are precision matched and adjusted (e-trimmed) at the factory resulting in quad/dual MOSFETs that are highly matched in electrical characteristics. The ALD1123E has four (4) separate source pins. SN1, SN2 share a common substrate pin V-1 which has to be connected to the most negative voltage potential. Likewise, SN3, SN4 share a common substrate pin V-2 which has to be connected to the negative voltage potential for SN3, SN4. The ALD1121E has two (2) separate source pins (SN1, SN2). Both SN1, SN2 share a common substrate pin 4 which has to be connected to the most negative voltage potential. Using an ALD1123E/ALD1121E MOSFET array is simple and straight forward. The MOSFETs function in electrical characteristics as n-channel MOSFETs except that all the devices have exceptional matching to each other. For a given input voltage, the threshold voltage of a MOSFET device determines its drain on-current, resulting in an on-resistance characteristic that can be precisely preset and then controlled by the input voltage very accurately. Since these devices are on the same monolithic chip, they also exhibit excellent tempco matching characteristics. These MOSFET devices have very low input currents, and as a result a very high input impedance (>10 ¹² Ohm). The gate voltage from a control source can drive many MOSFET inputs with practically no loading effects. Used in precision current mirror or current multiplier applications, they can be used to provide a current source over a 100 nA to 3 mA range, and with either a positive, negative or zero tempco. ### **Optional EPAD Threshold Voltage Trimming By User** The basic EPAD MOSFET device is a monotonically adjustable device which means the device can normally be e-trimmed to increase in threshold voltage and to decrease in drain-on current as a function of a given input bias voltage. Used as an in-circuit element for trimming or setting a combination of voltage and/or current characteristics, it can be e-trimmed remotely and automatically. Once e-trimmed, the set voltage and current levels are stored indefinitely inside the device as a nonvolatile stored charge, which is not affected during normal operation of the device, even when power is turned off. A given EPAD device can be adjusted many times to continually increase its threshold voltage. A pair of EPAD devices can also be connected differentially such that one device is used to adjust a parameter in one direction and the other device is used to adjust the same parameter in the other direction. The ALD1123E/ALD1121E can be e-trimmed with the ALD EPAD programmer to obtain the desired voltage and current levels. Or they can be e-trimmed as an active in-system element in a user system, via user designed interface circuitry. PN1, PN2, etc., are pins required for optional e-trim of respective MOSFET devices. If unused, these pins are to be connected to V- or ground. For more information, see Application Note AN1108. ### **ABSOLUTE MAXIMUM RATINGS** | Supply voltage, V+ referenced to V- | 0.3V to +13.2V | |--|-----------------| | Supply voltage, V _S referenced to V | ±6.6V | | Differential input voltage range | 0.3V to V++0.3V | | Power dissipation | 600 mW | | Operating temperature range PA, SA, PC, SC package | 0°C to +70°C | | DA, DC package | 55°C to +125°C | | Storage temperature range | 65°C to +150°C | | Lead temperature, 10 seconds | +260°C | ### **OPERATING ELECTRICAL CHARACTERISTICS** ### $T_A = 25^{\circ}C$ V+ = +5.0V unless otherwise specified | | | AL | ALD1123E ALD1121E | | | | | Test | | |---|---------------------|-------|-----------------------------|-------|-------|-----------------------------|-------|----------------------------------|---| | Parameter | Symbol | Min | Тур | Max | Min | Тур | Max | Unit | Conditions | | Drain to Source Voltage ¹ | V_{DS} | | | 10.0 | | | 10.0 | V | | | Initial Threshold Voltage ² | Vti | 0.990 | 1.000 | 1.010 | 0.990 | 1.000 | 1.010 | V | I _{DS} = 1μA T _A = 21°C | | E-trim Vt Range | V _t | 1.000 | | 3.000 | 1.000 | | 3.000 | V | | | Drain - Gate Connected
Voltage Tempco | TCV _{DS} | | -1.6
-0.3
0.0
+2.7 | | | -1.6
-0.3
0.0
+2.7 | | mV/°C
mV/°C
mV/°C
mV/°C | $I_D = 5\mu A$ $I_D = 50\mu A$ $I_D = 68\mu A$ $I_D = 500\mu A$ | | Initial Offset Voltage ³ | V _{OSi} | | 1 | 5 | | 1 | 5 | mV | | | Tempco of V _{OS} | TCV _{OS} | | 5 | | | 5 | | μV/°C | $V_{DS1} = V_{DS2}$ | | Differential Threshold Voltage ⁴ | DV _t | | | 2.000 | | | 2.000 | V | | | Tempco of Differential Threshold Voltage 4 | TCDV _t | | 0.033 | | | 0.033 | | mV/°C | | | Long Term Drift | ΔV _t /Δt | | -0.02 | -0.05 | | -0.02 | -0.05 | mV | 1000 Hours | | Long Term Drift Match | ΔV _t /Δt | | -5 | | | -5 | | μV | 1000 Hours | | Drain Source On Current | I _{DS(ON)} | | 3.0 | | | 3.0 | | mA | $V_G = V_D = 5V V_S = 0V$
$V_t = 1.0$ | | Drain Source On Current ⁴ | I _{DS(ON)} | | 0.8 | | | 0.8 | | mA | $V_{G} = V_{D} = 5V V_{S} = 0V$
$V_{t} = 3.0$ | | Initial Zero Tempco Voltage ³ | V _{ZTCi} | | 1.52 | | | 1.52 | | V | V _t = 1.000V | | Zero Tempco Current | I _{ZTC} | | 68 | | | 68 | | μΑ | | | Initial On-Resistance ³ | R _{ONi} | | 500 | | | 500 | | Ω | V _{GS} i= 5V V _{DS} = 0.1V | | On-Resistance Match | ΔR_{ON} | | 0.5 | | | 0.5 | | % | | NOTES: 1. V+ must be the most positive supply rail and V- must be at the most negative supply rail. Source terminals other than those labeled as V- can be at any voltage between V- and V+. ^{2.} Initial Threshold Voltage is set at the factory. If no EPAD Vt trimming is intended by user, then this is also the final or permanent threshold voltage ^{3.} Initial and Final values are the same unless deliberately changed by user. ^{4.} These parameters apply only when Vt of one or more of the devices are to be changed by user. # OPERATING ELECTRICAL CHARACTERISTICS (cont'd) $T_A = 25^{\circ}C$ V+ = +5.0V unless otherwise specified | | | ALD1123E | | | ALD1121E | | | | Test | |---------------------------------------|---------------------|----------|------|----------|----------|------|----------|----------|---------------------------------------| | Parameter | Symbol | Min | Тур | Max | Min | Тур | Max | Unit | Conditions | | Transconductance | gm | | 1.4 | | | 1.4 | | mA/V | $V_D = 10V, V_G = V_t + 4.0$ | | Transconductance Match | ∆gm | | 25 | | | 25 | | μA/V | $V_D = 10V, V_G = V_t + 4.0$ | | Low Level Output
Conductance | 90L | | 6 | | | 6 | | μΑ/V | $V_G = V_t + 0.5V$ | | High Level Output
Conductance | 9он | | 68 | | | 68 | | μΑ/V | V _G = V _t +4.0V | | Drain Off Leakage Current | I _{D(OFF)} | | 5 | 400
4 | | 5 | 400
4 | pA
nA | T _A = 125°C | | Gate Leakage Current | IGSS | | 10 | 100
1 | | 10 | 100
1 | pA
nA | T _A = 125°C | | Input Capacitance | C _{ISS} | | 25 | | | 25 | | pF | | | Cross Talk | | | 60 | | | 60 | | dB | f = 100KHz | | Relaxation Time Constant ⁴ | tRLX | | 2 | | | 2 | | Hours | | | Relaxation Voltage ⁴ | V _{RLX} | | -0.3 | | | -0.3 | | % | $1.0V \le V_t \le 3.0V$ | # E-TRIM CHARACTERISTICS $T_A = 25^{\circ}C$ V+ = +5.0V unless otherwise specified | | | AL | ALD1123E ALD1121E | | | | Test | | | |---|--------------------|-------|-------------------|-------|-------|-------------|-------|-----------|------------------------------| | Parameter | Symbol | Min | Тур | Max | Min | Тур | Max | Unit | Conditions | | E-trim V _t Range ⁴ | V _t | 1.000 | | 3.000 | 1.000 | | 3.000 | V | | | Resolution of V _t E-trim Pulse Step ⁴ | RVt | | 0.1 | 1 | | 0.1 | 1 | mV | | | Change in V _t Per
E-trim Pulse ⁴ | ΔV _t /N | | 0.5
0.05 | | | 0.5
0.05 | | mV/ pulse | $V_t = 1.0V$
$V_t = 2.5V$ | | E-trim Pulse Voltage ⁴ | Vp | 11.75 | 12.00 | 12.25 | 11.75 | 12.00 | 12.25 | V | | | E-trim Pulse Current ⁴ | lp | | 2 | | | 2 | | mA | | | Pulse Frequency ⁴ | f pulse | | 50 | | | 50 | | KHz | | DRAIN SOURCE ON CURRENT ### **OUTPUT CHARACTERISTICS** ### **OUTPUT CHARACTERISTICS** DRAIN SOURCE ON CURRENT vs. AMBIENT TEMPERATURE ## DRAIN SOURCE ON CURRENT vs. TRANSCONDUCTANCE vs. THRESHOLD VOLTAGE ## HIGH LEVEL OUTPUT CONDUCTANCE ALD1123E/ALD1121E Advanced Linear Devices GATE LEAKAGE CURRENT (pA)