Zener Voltage Regulators

500 mW SOD-123 Surface Mount

Three complete series of Zener diodes are offered in the convenient, surface mount plastic SOD-123 package. These devices provide a convenient alternative to the leadless 34-package style.

Features

- 500 mW Rating on FR-4 or FR-5 Board
- Wide Zener Reverse Voltage Range 1.8 V to 43 V
- Package Designed for Optimal Automated Board Assembly
- Small Package Size for High Density Applications
- ESD Rating of Class 3 (>16 kV) per Human Body Model
- Peak Power 225 W (8 x 20 µs)
- Pb-Free Packages are Available

Mechanical Characteristics:

CASE: Void-free, transfer-molded, thermosetting plastic case

FINISH: Corrosion resistant finish, easily solderable

MAXIMUM CASE TEMPERATURE FOR SOLDERING PURPOSES:

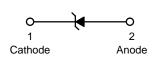
260°C for 10 Seconds

POLARITY: Cathode indicated by polarity band

FLAMMABILITY RATING: UL 94 V-0

MAXIMUM RATINGS

Rating	Symbol	Max	Unit
Peak Power Dissipation @ 20 μs (Note 1) @ T _L ≤ 25°C	P_{pk}	225	W
Total Power Dissipation on FR–5 Board, (Note 2) @ T _L = 75°C Derated above 75°C	P _D	500 6.7	mW mW/°C
Thermal Resistance, (Note 3) Junction–to–Ambient	$R_{ heta JA}$	340	°C/W
Thermal Resistance, (Note 3) Junction-to-Lead	$R_{ heta JL}$	150	°C/W
Junction and Storage Temperature Range	T _J , T _{stg}	-55 to +150	°C


Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

- 1. Nonrepetitive current pulse per Figure 11.
- 2. $FR-5 = 3.5 \times 1.5$ inches, using the minimum recommended footprint.
- 3. Thermal Resistance measurement obtained via infrared Scan Method.

ON Semiconductor®

http://onsemi.com

SOD-123 CASE 425 STYLE 1

MARKING DIAGRAM

xxx = Device Code (Refer to page 2)

M = Date Code

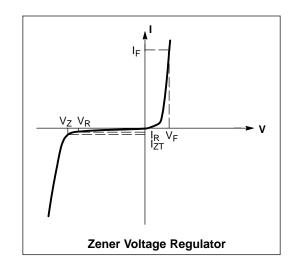
= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping [†]
MMSZ4xxxET1	SOD-123	3000/Tape & Reel
MMSZ4xxxET1G	SOD-123 (Pb-Free)	3000/Tape & Reel
MMSZ4xxxET3	SOD-123	10000/Tape & Reel
MMSZ4xxxET3G	SOD-123 (Pb-Free)	10000/Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


DEVICE MARKING INFORMATION

See specific marking information in the device marking column of the Electrical Characteristics table on page 2 of this data sheet.

Devices listed in *bold, italic* are ON Semiconductor **Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 0.95$ V Max. @ $I_F = 10$ mA)

Symbol	Parameter
VZ	Reverse Zener Voltage @ I _{ZT}
I _{ZT}	Reverse Current
I _R	Reverse Leakage Current @ V _R
V _R	Reverse Voltage
I _F	Forward Current
V _F	Forward Voltage @ I _F

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted, $V_F = 0.9 \text{ V Max.}$ @ $I_F = 10 \text{ mA}$)

		Zener Voltage (Note 1)				Leakage Current	
	Device	V _Z (V)			@ I _{ZT}	I _R @ V _R	
Device*	Marking	Min	Nom	Max	μΑ	μΑ	V
MMSZ4684ET1	CG3	3.13	3.3	3.47	50	7.5	1.5
MMSZ4688ET1, G	CG7	4.47	4.7	4.94	50	10	3
MMSZ4689ET1, G	CG8	4.85	5.1	5.36	50	10	3
MMSZ4690ET1	CG9	5.32	5.6	5.88	50	10	4
MMSZ4691ET1	CH1	5.89	6.2	6.51	50	10	5
MMSZ4692ET1	CH2	6.46	6.8	7.14	50	10	5.1
MMSZ4693ET1	СНЗ	7.13	7.5	7.88	50	10	5.7
MMSZ4697ET1	CH7	9.50	10	10.50	50	1	7.6
MMSZ4699ET1	CH9	11.40	12	12.60	50	0.05	9.1
MMSZ4701ET1, G	CJ2	13.3	14	14.7	50	0.05	10.6
MMSZ4702ET1, G	CJ3	14.25	15	15.75	50	0.05	11.4
MMSZ4703ET1	CJ4	15.20	16	16.80	50	0.05	12.1
MMSZ4705ET1	CJ6	17.10	18	18.90	50	0.05	13.6
MMSZ4709ET1	CK1	22.80	24	25.20	50	0.01	18.2
MMSZ4711ET1	СКЗ	25.65	27	28.35	50	0.01	20.4
MMSZ4717ET1	CK9	40.85	43	45.15	50	0.01	32.6

^{1.} Nominal Zener voltage is measured with the device junction in thermal equilibrium at $T_L = 30^{\circ}C \pm 1^{\circ}C$.

^{*}The "G" suffix indicates Pb-Free package available.

TYPICAL CHARACTERISTICS

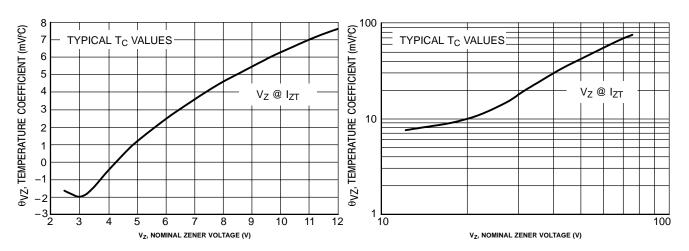


Figure 1. Temperature Coefficients (Temperature Range –55°C to +150°C)

Figure 2. Temperature Coefficients (Temperature Range –55°C to +150°C)

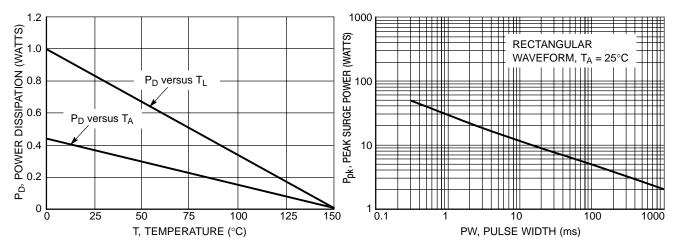


Figure 3. Steady State Power Derating

Figure 4. Maximum Nonrepetitive Surge Power

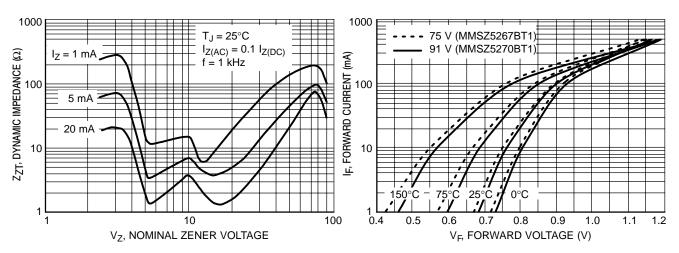


Figure 5. Effect of Zener Voltage on Zener Impedance

Figure 6. Typical Forward Voltage

TYPICAL CHARACTERISTICS

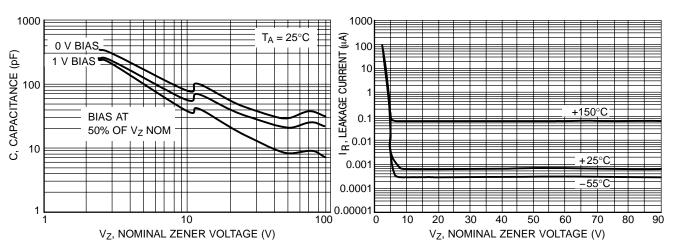


Figure 7. Typical Capacitance

Figure 8. Typical Leakage Current

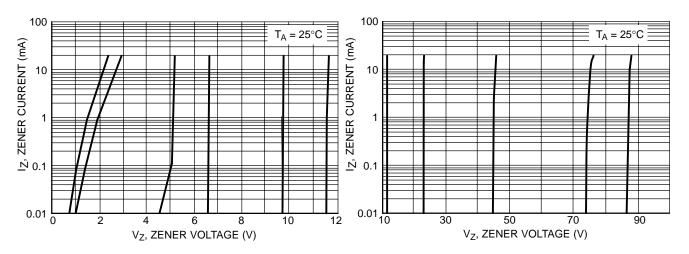


Figure 9. Zener Voltage versus Zener Current (V_Z Up to 12 V)

Figure 10. Zener Voltage versus Zener Current (12 V to 91 V)

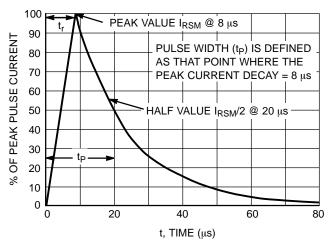
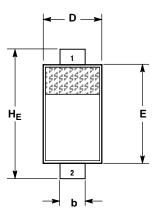
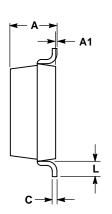
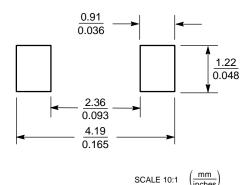




Figure 11. $8\times 20~\mu s$ Pulse Waveform

PACKAGE DIMENSIONS

SOD-123 CASE 425-04 ISSUE E


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.94	1.17	1.35	0.037	0.046	0.053
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.51	0.61	0.71	0.020	0.024	0.028
С			0.15			0.006
D	1.40	1.60	1.80	0.055	0.063	0.071
Е	2.54	2.69	2.84	0.100	0.106	0.112
HE	3.56	3.68	3.86	0.140	0.145	0.152
L	0.25			0.010		

STYLE 1: PIN 1. CATHODE 2. ANODE

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and the registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.