

16V Auto-Zero, Rail-to-Rail Output, **Precision Amplifiers**

Preliminary Technical Data

AD8638

FEATURES

Low Offset Voltage: 10 µV max. Offset Drift: 0.08 µV/°C Rail-to-Rail Output 16V Single or ±8V Dual Supply Operation High Gain and CMRR: 140dB

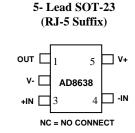
High PSRR: 140 dB

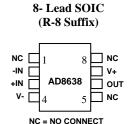
Very Low Input Bias Current: 100 pA Low Supply Current: 1.4 mA/amp

APPLICATIONS

Pressure and Position Sensors Strain Gage Amplifiers Medical Instrumentation Thermocouple Amplifiers Automotive Sensors Precision References Precision Current Sources

GENERAL DESCRIPTION


The AD8638 is a wide bandwidth auto-zero amplifiers featuring rail-to-rail output swing while operating from 5 V to 16 V single supply or ± -2.5 V to ± 8 V dual supplies.


Using Analog Devices' new topology these zero-drift amplifiers combine low cost, with high accuracy and low noise. No external capacitors are required. In addition, the AD8638 family greatly reduces the digital switching noise often found in chopper-stabilized amplifiers.

With an offset voltage of 10 µV, offset drift less than 0.08 $\mu V/^{\circ}C$ and noise of only 1.5 μVp -p (0 Hz to 10 Hz), the AD8638 family is perfectly suited for applications where error sources must be minimized. Position and pressure sensors, thermocouple and thermopile detectors, and strain gage amplifiers benefit greatly from nearly zero drift over their operating temperature range.

The AD8638 family is specified for the extended industrial $(-40^{\circ} \text{ to } +125^{\circ}\text{C})$ temperature range. The AD8638 is available in SOT-23 and SOIC.

PIN CONFIGURATIONS

Parameter	Symbol	Conditions	A Grade			Units
			Min	Тур	Max	
INPUT CHARACTERISTICS						
Offset Voltage	V _{OS}	25°C		3	10	μV
		$-40^{\circ} < T_{A} < +125^{\circ}C$			20	μV
Input Bias Current	I_{B}	25°C		20	100	pA
		$-40^{\circ} < T_{A} < +125^{\circ}C$			250	pA
Input Offset Current	I _{OS}	$-40^{\circ} < T_{A} < +125^{\circ}C$		40	80 150	pA pA
Input Voltage Range		$-40^{\circ} < T_{A} < +125^{\circ}C$	0		V _s - 2	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -5V \text{ to } +5V$	120	140		dB
J		$-40^{\circ} < T_{A} < +125^{\circ}C$	120	130		dB
Large Signal Voltage Gain (Note 1)	A _{VO}	$R_L = 10 \text{ k}\Omega, V_O = -5 \text{ to } +5V$	130	130		dB
		$-40^{\circ} < T_{A} < +125^{\circ}C$	115	130		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			0.004	0.08	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$	15.8			V
		-40°C to +125°C		15.7		V
		$R_L = 10K\Omega$	15.9	15.95		V
		-40°C to +125°C		15.95		V
Output Voltage Low	V _{OL}	$R_L = 2 k\Omega$		100		mV
		-40°C to +125°C		170		mV
		$R_L = 10K\Omega$		30	50	mV
		-40°C to +125°C		70		mV
Short Circuit Limit	I_{SC}			±45		mA
		-40°C to +125°C		40		mA
Output Current	I _{OUT}			±30		mA
		-40°C to +125°C				mA
POWER SUPPLY	nann		440	4.40		1.5
Power Supply Rejection Ratio	PSRR	$V_S = 5V \text{ to } 16V$	110	140		dB
Supply Cumont/Amplifica		-40°C to +125°C		1.0	1.2	dB
Supply Current/Amplifier	I _{SY}	$V_0 = 0V$ $40^{\circ} < T_1 < 125^{\circ}C$		1.0	1.2 1.4	mA
DANAMA DEDECONANCE		$-40^{\circ} < T_{A} < +125^{\circ}C$			1.4	mA
DYNAMIC PERFORMANCE Slew Rate	SR	$R_{\rm L} = 10 \text{ k}\Omega$		2		V/µs
	SK	$R_L = 10 \text{ K} 2$		2		,
Overlay Recovery Time Gain Bandwidth Product	GBP			50 1.5		μs MHz
NOISE PERFORMANCE	ODI			1.3		IVIIIZ
Voltage Noise	e _{n p-p}	f=0.1 to 10 Hz		1.5		l IV
Voltage Noise Density	e _n p-p	f=1kHz		1.3 59		μV_{p-p} nV/\sqrt{Hz}
Current Noise Density						$\int_{fA}^{HV/VHz}$
Current Noise Delisity	i _n	f=10Hz		tbd		I'A' AUS

Note 1: Gain testing is highly dependent upon test bandwidth

Parameter	Symbol	Conditions	A Grade			Units
			Min	Тур	Max	
INPUT CHARACTERISTICS						
Offset Voltage	V _{OS}			3	10	μV
	03	$-40^{\circ} < T_{A} < +125^{\circ}C$			20	μV
Input Bias Current	I_{B}			15	40	pA
		$-40^{\circ} < T_{A} < +125^{\circ}C$			120	pA
Input Offset Current	I _{OS}	$-40^{\circ} < T_{A} < +125^{\circ}C$		30	40 60	pA pA
Input Voltage Range		$-40^{\circ} < T_{A} < +125^{\circ}C$	0		V _S - 2	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -5V \text{ to } +5V$	120	135	15 2	dB
Common Wode Rejection Ratio	Civilat	$-40^{\circ} < T_{A} < +125^{\circ}C$	120	130		dB
Large Signal Voltage Gain (Note 1)	A _{VO}	$R_L = 10 \text{ k}\Omega, V_O = -5 \text{ to } +5V$	130	140		dB
	,,,	$-40^{\circ} < T_{A} < +125^{\circ}C$	120	140		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ} < T_{A} < +125^{\circ}C$		0.004	0.08	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$	4.9	4.95		V
		-40°C to +125°C		4.9		V
		$R_L = 10 \text{ k}\Omega$	4.95	4.99		V
		-40°C to +125°C		4.99		V
Output Voltage Low	V _{OL}	$R_L = 2 k\Omega$		25		mV
		-40°C to +125°C		40		mV
		$R_L = 10 \text{ k}\Omega$		7	14	mV
		-40°C to +125°C		15		mV
Short Circuit Limit	I _{SC}			±20		mA
		-40°C to +125°C		15		mA
Output Current	I _{OUT}			±tbd		mA
		-40°C to +125°C				mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 5V \text{ to } 16V$	110	140		dB
		-40°C to +125°C				dB
Supply Current/Amplifier	I_{SY}	$V_O = 0V$		0.9	1	mA
		$-40^{\circ} < T_A < +125^{\circ}C$			1.2	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		2		V/µs
Overlay Recovery Time				50		μs
Gain Bandwidth Product	GBP			1.3		MHz
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	f=0.1 to 10 Hz		1.5		μV_{p-p}
Voltage Noise Density	e _n	f=1kHz		59		nV/√Hz
Current Noise Density	i _n	f=10Hz		tbd		fA/√Hz

Note 1: Gain testing is highly dependent upon test bandwidth

AD8638

Preliminary Data Sheet

ABSOLUTE MAXIMUM RATINGS¹

Supply voltage+16	óV
Input Voltage ±V	Vs
Differential Input Voltage ¹ ±V	
Output Short-Circuit Duration to Gnd Indefini	
Storage Temperature Range	
R, RM, RU Packages65°C to +150°	°C
Operating Temperature Range	
AD863840°C to +125°	°C
Junction Temperature Range	
R, RT Packages65°C to +150°	°C
Lead Temperature Range (Soldering, 60 Sec) +300°	°C

Package Type	θ_{JA^2}	θЈС	Units
5-Lead SOT-23 (RT-5)	230	146	°C/W
8-Pin SOIC (R)	158	43	°C/W

NOTES

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8638ARJZ	-40°C to +125°C	5-Lead SOT-23	RJ-5
AD8638ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8

¹ Differential input voltage is limited to $\pm 5 V$ or the supply voltage whichever is less.

 $^{^2}$ θ_{JA} is specified for the worst case conditions, i.e., θ_{JA} is specified for device soldered in circuit board for surface mount packages.