Universal Telephone IC – All Functions Integrated

Description

TEMIC Semiconductors' low-voltage telephone circuit U3761MB performs all the speech and line interface functions required in an electronic telephone set, the tone ringer, the pulse and DTMF dialing with redial, notice function, and 13 memories. Operation below 15 mA is possible with reduced performance.

Electrostatic sensitive device. Observe precautions for handling.

Features

Speech Circuit

- Adjustable DC characteristic
- Symmetrical input of microphone amplifier
- Receiving amplifier for dynamic or piezo-electric earpieces
- Automatic line-loss compensation

Dialer

- DTMF / pulse switchable
- Pulse dialing 66/33 or 60/40 or DTMF dialing selectable by pin
- Selectable flashing duration by key pad
- Pause function
- Optical indication of temporary DTMF mode
- Keytone for pulse dialing
- Last number redial up to 32 digits
- Three by 17 digits direct (one-touch) memory

- Ten by 17 digits indirect (two-touch) memory
- Notice function up to 32 digits
- Standard low-cost crystal 3.58 MHz or ceramic resonator
- Handset Mute (Privacy) with optical indication
- Additional toggle flipflop
- Internal loop interrupt detection

Tone Ringer

- 2-tone ringer
- Adjustable volume
- RC oscillator
- Adjustable threshold

Benefits

- Low number of external components
- High quality through one IC solution

Ordering Information

Туре	Package	Remarks
U3761MB–SFN	SSO44	Tube
U3761MB–SFNG3	SSO44	Taped and reeled

Block Diagram / Applications

Figure 1. Block diagram / applications

Rev. A5, 26-May-99

Preliminary Information

Pin Description

Figure 2. Pinning SSO44

Pin	Symbol	Function	Configuration
1	C1	Keyboard input	
2	C2		
3	C3		
4	C4		$PD = \mathbf{P}rotection \mathbf{D}evice$
5	Earth	Earth key (604 ms high pulse, 1 s pause)	EARTH E
6	HFI	Toggle flipflop input Input with 200 kΩ pull-down resistor. HFI triggers HFO with each LOW/ HIGH edge.	HFI PD
7	HFO	Output will be toggled by each LOW/ HIGH edge at HFI.	HFO PD PD
8	XT	A built-in inverter provides oscillation with an inexpensive 3.579545-MHz crystal or ceramic	
9	XT	resonator	XT PD PD XT VDD XT PD VDD T PD VDD T PD VDD T PD VDD T T
10	MFO	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MFO D PD

4 (25)

Rev. A5, 26-May-99

Pin	Symbol	Function	Configuration
11	MFIND	Output switches to low being in temporary DTMF mode. Reset by on hook condition. Maximum voltage at $\overline{\text{MFIND}} = 5.5$ V.	MFIND MFIND
12	GND	Ground	
13	MIC 1	Inverting input of microphone amplifier	
14	MIC 2	Non-inverting input of microphone amplifier	MIC1
15	MICO	Transmit pre-amp output which is normally capacitively coupled to Pin TIN	MICO
16	VL	Positive supply voltage input to the device. The current through this pin is modulated by the transmit signal.	VL PD I6V RDC
17	RDC	An external resistor (1 W) is required from this pin to GND to control the DC input im- pedance of the circuit. It has a nominal value of 39 Ω for low-voltage operation. Values up to 100 Ω may be used to increase the available transmit output voltage swing at the expense of low-voltage operation.	AGC RDC
18	TIN	Input to the line output driver amplifier. Transmit AGC applied to this stage.	

TE	M	I	(ר ר
Semico	n d u	c t	0 r	s

Pin	Symbol	Function	Configuration
19	VI	This internal voltage bias line must be con- nected to VL via an external resistor which dominates the AC input impedance of the cir- cuit and should be 680 Ω for an 600- Ω input impedance or 1.2 k Ω for a 900- Ω input im- pedance.	VI PD
20	MUTE	Pin for testing Forcing MUTE to GND mutes the microphone and decreases the earpiece signal by typically 29 dB; no pull up circuit allowed.	MUTE MUTE
21	PRIND	PRIVACY indication pin Open collector with minimum 1 mA drive current to GND when PRIVACY = active	PRIND
22	RECIN	Receive amplifier input. The receiving ampli- fication is regulated by an AGC.	RECIN 60K Z
23	RECO2	Output of the receive amplifier. Dynamic transducers with a minimum impedance of	B VL
24	RECO1	100 Ω can be directly driven by these outputs.	RECO2 RECO1
25	CLIM	Time constant of anticlipping in transmit path. CLIM $\ge 2.2 \ \mu\text{F}$ CLIM = GND: anticlipping inactive	
26	ST	The output of the sidetone cancellation signal, which requires a balanced impedance of 8 to 10 times the subscribers line impedance to be connected to Pin VL.	ST PD 16V
27	THA	Ringer threshold adjustment	$\begin{array}{c c} VRIAC \\ \bullet \\ \hline \\ 12K \\ 140K \\ 140K \\ 140K \\ 140K \\ 10K \\ 1$
28	AGC	The range of transmit and receive gain varia- tions between short and long loops may be adjusted by connecting a resistor R_{AGC} from this pin to (GND). This pin can be left open to set AGC out of action.	AGC RDC VL

Pin	Symbol	Function		Configuration
29	VRIAC	Ringing supply	URIAC	PD 70K
30	VRING	DC supply voltage for the tone ringer is lim- ited to 30 V with integrated Z-diode.	VRING OUT	PD 6.5K 200 PD 50V
31	RCK	RC clock oscillator for ringer	© RCK	PD O.8V
32	OUT	Buzzer output	VRING OUT	PD 50V
33	VDD	Supply output for dialer part	vDD	
34	Test	Test input with 6.25 kΩ pull-up resistor	TEST	VDD VDD VDD VDD VDD VDD VDD PD
35	n.c.	Not connected		
36	HKS	Hook switch input. HKS = 0: On-hook state. Chip in sleep mode, no operation (external pull-down resistor recommended). HKS = 1: Off-hook state. Chip enable for normal operation. $I_{HKS} \le 0.5$ mA	HKS ▣	PD PD

TEMIC

Semiconductors

Pin	Symbol	Function	Configuration
37	KT	Keytone output signal which is sent out in pulse dialing mode with a keytone frequency of 582 Hz. KT sink/ drive current is about 100 μ A at V _{DD} = 2.5 V	KT PD VDD KT KT PD VDD VDD VDD VDD
38	MODE	 Pulling MODE pin to: C3 tone mode with 87 ms burst time and 140 ms pause C4 tone mode with 87 ms DTMF burst and 87 ms pause R1 pulse mode with 20 pps, Make/Break = 40/60 R2 pulse mode with 20 pps, Make/Break = 33/66 R3 pulse mode with 10 pps, Make/Break = 40/60 R4 pulse mode with 10 pps, Make/Break = 33/66 C1 pulse mode with 10 pps, Make/Break = 33/66 and temp. DTMF with 87 ms DTMF burst, 140 ms pause MODE pin pulled to R4: with temporary DTMF, 87 ms DTMF burst and 87 ms pause 	MODE MODE
39	DP	Pulse dialing output. Flash key will cause \overline{DP} to be active in either DTMF mode or pulse mode. In on-hook state is $\overline{DP} = VDD$.	DP P
40	Mask	Short mute during pulse dialing, active high During MASK an internal npn-transistor short- ens VL against VI.	MASK Designed by VDD MASK DESi
41	R1	Keyboard input	
42	R2		
43	R3		
44	R4		

Keyboard Operation

EMIC

Semiconductors

	C1	C2	C3	C4		
	1	2	3	S	M1	R1
	4	5	6	\boxtimes	M2	R2
	7	8	9	А	M3	R3
	*/T	0	#	R/P	N	R4
⊥ -	F1	F2	F3	Е		

•

*/T: * function;

F1, F2, F3: Flash keys

pulse-to-tone function

M1 to M3: One-touch memory

- S: Store function key
- A: Indirect repertory dialing function key (LN 0 to 9)
- R/P: Redial and pause function key
- N: Notice function

Normal Dialing

			-			
OFF HOOK	,	D1	,	D2	,,	Dn

- 1. D1, D2, ..., Dn will be dialed out.
- 2. Dialing length is unlimited, but redial is inhibited if length oversteps 32 digits.
- 3. If redialing length oversteps 32 digits, the redialing function will be inhibited.

Redialing

The R/P key can execute the redial function only as the first key-in after off-hook; otherwise, it executes the pause function (3.6 s).

Keys stored in redial memory: 0 to 9, *, #, R/P, F1, F2, F3, Earth, A, M1, M2, M3, N

Number Store

OFF	FHOOK, D1, D2,, Dn, S, S, Mn (or Ln)
1.	D1, D2,, Dn will be stored in memory location only (not in redial memory) and dialed out.
OFF	FHOOK, S, D1, D2,, Dn, S, Mn (or Ln)
2.	D1, D2,, Dn will be stored in memory location but will not be dialed out.
3.	R/P and $*/T$ keys can be stored as a digit in memory, also F1, F2, F3, Earth. In store mode, R/P is the pause function key; $*/T$ is the pulse-to-tone function key.

4. The store mode is released after the store function is executed or when the state of the hook switch is changed.

Repertory Dialing

- 1. OFF HOOK , Mn
- 2. OFF HOOK , A , Ln

Notice (N)

OFF HOOK	, D1	, D2	,, 🔳	Dn,	N
----------	------	------	------	-----	---

1. If the dialing of D1 to Dn is finished, pressing the N key will cause D1 to Dn to be copied to the N memory.

OFF HOOK , N

- 2. D1 to Dn will be dialed out after the N key is pressed.
- 3. Notice function is valid as first key only.

Cascaded Dialing

- 2. Repertory dialing + Normal dialing + Normal dialing
- 3. Redialing + Normal dialing + Repertory dialing
- 4. Redialing is valid as first key-in only.

Switching of Flash and Earth

Flash and Earth can be switched with following procedures:

Rev. A5, 26-May-99

Preliminary Information

EMIC

Semiconductors

Access Pause

1. The pause function can be stored in the memory.

2. The pause function is executed in normal dialing and redialing.

Figure 9. Pause function

TEMIC Semiconductors

Pulse-to-Tone (*/T)

3. The dialer remains in tone mode when the digits have been dialed out and can be reset to pulse mode by going on-hook only.

Flash (F1 or F2 or F3)

OFF HOOK , F_n

- 1. The dialer will execute flash break and the entire flash pause time will elapse before the next digits are dialed out.
- 2. The flash key can be stored as a digit in the memory. Only one flash, however, will be released to the users.
- 3. The system will return to the initial state after the flash pause time has elapsed.

Figure 14. Symbolic timing diagram: on hook debounce time

Figure 15. HKS threshold voltage

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Line current	IL	140	mA
DC line voltage	VL	14	V
DC voltage at Pins 1 to 11 and 33 to 44	V _{DC}	5.5	V
Junction temperature	T _i	125	°C
Ambient temperature	T _{amb}	-25 to +75	°C
Storage temperature	T _{stg}	-55 to +150	°C
Total power dissipation, $T_{amb} = 60^{\circ}C$ SSO44	P _{tot}	0.9	W
Junction ambient SSO44	R _{thJA}	70	K/W

ESD withstand voltage 1 kV according to MIL standard 883d method 3015.7 (HBM)

Electrical Characteristics: Speech Circuit

Reference point Pin GND, f = 1000 Hz, 0 dBm = 775 mV_{rms}, R_{DC} = 39 Ω / 1 W, T_{amb} = 25°C, unless otherwise specified, refer to "Basic Test Circuit". CLIM = GND

Parameters	Test Conditions / Pin	Symbol	Min.	Тур.	Max.	Unit
Line voltage	$I_L = 8 \text{ mA}$	VL		1.4		V
-	$I_L = 20 \text{ mA}$		3.6	3.85	4.1	V
	$I_L = 73 \text{ mA}$		5.9	6.55	7.2	V
	$I_L = 100 \text{ mA}$		6.9		8.2	V
Transmit and sidetone	-			_		_
Input resistance	R _i	R _i	45	80	120	kΩ
Gain	$I_L = 20 \text{ mA}, \text{ S5} = \text{open}$	Gs	46.8	47.8	48.8	dB
Gain change with current	$I_{L} = 20 \text{ to } 60 \text{ mA}$ $R_{AGC} = \text{infinite}$	ΔG_S	-0.5		0.5	dB
Gain deviation	$T_{amb} = -10 \text{ to } +60^{\circ}\text{C}$ $I_{L} = 20 \text{ mA}$	ΔG_S	-0.5		0.5	dB
Line-loss compensation	$R_{AGC} = 12 \text{ k}\Omega$, $I_L = 73 \text{ mA}$	ΔG_s	-7	-6	-4.8	dB
Distortion at line $V_L = 0.775 V_{rms}$	$I_L = 20 \text{ mA}, \text{ S5} = \text{open}$	dt			2	%
Max. output voltage at line $d \leq 5\%$	$I_L = 20 \text{ mA}, V_{\text{mic}} = 10 \text{ mV},$ CLIM = 2.2 μ F, S ₁ = open	V _{Lmax}		1.2		dBm
Attack time transmit anticlipping	$CLIM = 2.2 \ \mu F$	t _{att}		3.5		ms
Noise at line weighted psophometrically	$I_L > 20 \text{ mA}, G_S = 48 \text{dB}$	n _o			- 72	dBmp
Sidetone reduction	$I_L \ge 20 \text{ mA}$	G _{STA}	10	15	20	dB
DTMF amplifier						
Volume range d < 5%	Single tone, $I_L \ge 20 \text{ mA}$	VL	1.3			dBm
DTMF output level low frequency group	$I_L = 20 \text{ mA}, \text{ S5} = \text{closed}$ $T_{\text{amb}} = -5^{\circ}\text{C} \text{ to } +60^{\circ}\text{C}$	VL	-7.6		-4.6	dBm
Pre-emphasis between high- and low-level	$P_{PRE} = P_{HLG} - P_{LLG},$ S5 = closed,	P _{PRE}	1.9	2.5	3.1	dB
frequency group	$T_{amb} = -5^{\circ}C \text{ to } +60^{\circ}C$					
Receiving amplifier Gain	L > 20 m	G	3		5	dD
Gain change with current	$I_{L} \ge 20 \text{ mA}$ $I_{L} = 20 \text{ to } 60 \text{ mA}$	G _R	-0.5		5 0.5	dB dB
	\vec{R}_{AGC} = infinite	ΔG_R				
Gain deviation	$T_{amb} = -10 \text{ to } +60^{\circ}\text{C}$ $I_{L} = 20 \text{ mA}$	ΔG_R	-0.3		0.7	dB
Line-loss compensation	$I_L = 73 \text{ mA}$	ΔG_R	-7	-6	-4.7	dB
Receiving noise at earphone weighted psophometrially	$I_L = 73 \text{ mA}$	n _i		-77.5	-71	dBm
Gain change when muted	$I_L \ge 20 \text{ mA}$	G _{RM}	24	29	34	dB
Output voltage push-pull	$I_L \ge 20 \text{ mA}, Z_{ear} = 68 \text{ nF},$ 100 Ω in series, $d \le 2\%$	V _{RECO}	0.8	0.9		V _{rms}
Ear protection differential	$I_L = 40 \text{ mA}, V_{gen} = 4 V_{rms},$ $Z_{ear} = 68 \text{ nF} + 100 \Omega$	Vear	1.3	1.6	2.5	V _{rms}

Electrical Characteristics: Speech Circuit (continued)

Parameters	Test Conditions / Pin	Symbol	Min.	Тур.	Max.	Unit
Supply voltage (for internal use only)						
Output voltage	$I_L \ge 20 \text{ mA}$ dialing mode	V _{DD}	2.0		6.3	V
Note: Output must be limited						
externally to max. 5.5 V						
Available current for	$I_L \ge 20 \text{ mA}$ dialing mode	I _{DD}	150			μΑ
peripherals						
Transmit						
Maximum output voltage	$I_{L} = 20 \text{ mA},$	V _{L max}		3.4	4	Vpp
swing at line	$I_{L} = 20 \text{ mA},$ $V_{MIC} = 50 \text{ mV}_{rms}$					
Mute suppression transmit	$I_L = 20 \text{ mA}$	G _{SPRIV}	60			dB
with privacy function						

DC Characteristics Dialer

 $V_{DD} = 2.7$ V, $f_{OSC} = 3.58$ MHz, all outputs unloaded, S9 closed; HKS = 1

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Memory retention current	$HKS = 0, V_{DD} = 1.0 V$	I _{MR}			0.1	μΑ
Data retention voltage				0.5		V
DTMF distortion	$R_L = 5 k\Omega$	d		-30	-23	dB
DP output sink current	$V_{PO} = 0.5 V$	I _{PL}	0.5			mA
Keyboard input drive current	$V_I = 0 V$	I _{KD}		20		μΑ
Keyboard input sink current	$V_I = 2.7 V$	I _{KS}		500		μΑ
Key on resistance		R _{KON}			5	kΩ
Key off resistance		R _{KOFF}	100			kΩ
Mask sink / drive current		I _M H/L	0.5			mA
Earth sink / drive current		I _e H/L	0.5			mA
Isolation resistance XT/\overline{XT}		Riso	4.7			MΩ
Maximum voltage at HKS					5.5	V
Maximum input current at HKS					0.5	mA

AC Characteristics Dialer

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Keypad active in debounce mode		t _{KID}	15	20	25	ms
Key release debounce		t _{KRD}	15	20	25	ms
Pre-digit pause	MODE pin = R3 (10 pps) MODE pin = C1, C4 (10 pps)	t _{PDP} t _{PDP}	37 31	40 33.3	41 33.5	ms ms
	MODE pin = R1 (20 pps) MODE pin = R2	t _{PDP} t _{PDP}		20 16.65		ms ms
Inter-digit pause (auto dialing)	10 pps, $t_{IP} = t_{IDP} + t_{PDP}$ 20 pps	t _{IP} t _{IP}	810	836 512	860	ms ms
Make/break ratio	MODE pin = R1 (20 pps), R3 (10 pps) MODE pin = C1, R4 (10 pps) R2 (20 pps)	M/B	40.8:60.2 35.6:64.4	40:60 33:67	39.2:60.8 31.2:68.8	% %
DTMF output duration	Auto dialing, $MODE = C4$ MODE = C3	t _{TD}	84 84	87 87	90 90	ms
Inter-tone pause	Auto dialing, $MODE = C4$ MODE = C3	t _{ITP}	84 135	87 140	90 147	ms
Flash break time F1 F2 F3	C_1 connected to GND C_2 connected to GND C_3 connected to GND	t _{FB}	95 245 590	98 250 604	101 255 610	ms ms ms
Rise time of leading edge at HKS	20 to 70% of VDD	t _{rHKS}			10	ms
Flash pause time	F1, F2, F3	t _{FP}	0.9	1	1.1	S
Pause time		t _P	3.5	3.6	3.7	S
On-hook debounce time		t _{ohd}	145	165	185	ms
Earth time	C ₄ connected to GND	t _{et}		604		ms
Earth pause time		t _{pt}	0.9	1	1.1	S
Break duration	MODE $pin = R3$ MODE $pin = C1, R4$	t _B	57.6 63	60 66.7	62.4 69	ms ms
	MODE pin = R1 (20 pps) MODE pin = R2	t _B		30 33.35		ms ms
Make duration	$\begin{array}{l} \text{MODE pin} = \text{R3} \\ \text{MODE pin} = \text{C1}, \text{R4} \end{array}$	t _M	38 31	40 33.3	41 35	ms ms
	MODE pin = R1 (20 pps) MODE pin = R2	t _M		20 16.65		ms ms
Break + make duration	MODE pin = $C1$, R3, R4	t _P	95	100	105	ms
	MODE pin = R1, R2 (20 pps)	t _P		50		ms

Electrical Characteristics Tone Ringer

$f_{RCK} = 4 \text{ kHz}, V_{RING} = 20 \text{ V}, T_{amb} = 25 \text{ °C}, reference point GND, unless otherwise specifie$	$f_{RCK} = 4 \text{ kHz}, V_{RING} = 20 \text{ V}, T_{amb} = 20 \text{ V}$	= 25°C, reference point C	GND, unless otherwise specified
--	--	---------------------------	---------------------------------

Parameters	Test Conditions / Pins	Symbol	Min.	Тур.	Max.	Unit
Supply current,	$V_{RIAC} = 20 V$	I _{RING}	2.1		3.8	mA
outputs open						
Switch-on threshold	V_{RIAC} , THA = open	V _{RON}	8	9	10	V
Switch-off threshold	V _{RIAC}	V _{ROFF}	5.0	5.6	6.5	V
Ringing frequency	$R = 150 \text{ k}\Omega$, $C = 1 \text{ nF}$	f _{1H}	937	1010	1083	Hz
	$V_{RIAC} > V_{RON}$	f _{1L}	752	808	868	Hz
Range of external compo-		С	1000		2200	pF
nents for R/C oscillator		R	50		330	kΩ
Audio sequence frequency		f ₂	11.5	12.5	14.0	Hz
Output voltage swing	$V_{\text{Ring}} = 25 \text{ V}, C_{\text{out}} = 68 \text{ nF}$	Vout	21	23		V _{pp}
Turn-off delay	See figure 15	t _{off}		65	100	ms

Figure 16. Turn-off delay time

Note

The oscillator frequency is defined by R and C at Pin RCK.

$$f_{Osc} = \frac{1}{1.594 \times C \times [R + 3809 \ \Omega]}$$

The audio sequence frequency $f_2 \mbox{ and the ratio of low } \label{eq:f2}$

frequency
$$f_{1L}$$
 and high frequency f_{1H} are derived from oscillator frequency by internal deviders. So f_2 , f_{1H} and f_{1L} are given by:

$$f_2 = \frac{f_{Osc}}{320} \quad ; \quad f_{1H} = \frac{f_{Osc}}{4} \quad ; \quad f_{1L} = \frac{f_{Osc}}{5}$$

Basic Test Circuit

Figure 17. Basic test circuit

Preliminary Information

Equations for Electrical Characteristic Parameters of the Speech Circuit

The equations refer to the basic test circuit. If not otherwise specified, the switches in the basic test circuit are inactive.

Transmit gain

$$GS = 20 \times \log \left(\frac{V_{L}}{V_{MIC}}\right)$$
$$V_{MIC} = 3 \text{ mV/1 kHz}, S5 = \text{oper}$$

Receiving gain

 $GR = 20 \times \log \left(\frac{V_{RECO}}{V_L}\right)$ RX-mode: $V_{gen} = 300 \text{ mV/1 kHz}$, S7b

Line-loss compensation transmit

 $\Delta GS = GS(at I_L = 73 \text{ mA})-GS(at I_L = 20 \text{ mA})$ TX-mode: V_{MIC} = 3 mV/1 kHz, S5 = open

Sidetone reduction

GSTA = $20 \times \log\left(\frac{V_L}{V_{RECO}}\right)$ (in TX-mode) + GR TX-mode: $V_{MIC} = 3 \text{ mV/1 kHz}$, S5 = open

Line-loss compensation receive

 $\Delta GR = GR(at I_L = 73 mA)-GR(at I_L = 20 mA)$ RX-mode: V_{gen} = 300 mV/1 kHz, S7b

Gain change when muted

 $GRM = 20 \times \log \frac{V_{RECO}}{V_L} \text{ (Mute = inactive)} -20 \times \log \frac{V_{RECO}}{V_L} \text{ (Mute = active)}$ $V_{gen} = 100 \text{ mV/1 kHz}, S5 = \text{open}, S8 = \text{open}$

Input impedance of microphone amplifier

$$Ri = \frac{50 \text{ k}}{\left(\frac{V_{L(S6 = closed)}}{V_{L(S6 = open)}} - 1\right)}$$

TX-mode: $V_{MIC} = 3 \text{ mV}/1 \text{ kHz}$, S5 = open

Rev. A5, 26-May-99

9.15

Packaging Information

Package SSO44

Ozone Depleting Substances Policy Statement

It is the policy of **TEMIC Semiconductor GmbH** to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

TEMIC Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

TEMIC Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify TEMIC Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> TEMIC Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423