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TSC692E Floating Point Unit

1. Introduction

1.1. Scope

This document presents a preliminary datasheet of the TSC692E RT Floating Point Unit device specification. It is
organized in three chapters:

e Standard FPU (TSC692E) Functions (Chapter 3)
® Fault MECHANISM and Test MECHANISM (Chapter 4)
® FElectrical and Mechanical Specification (Chapter 5)

Chapter 3 presents standard functions including some adaptations due to the introduction of fault tolerance
MECHANISM. Without losing the full binary compatibility with the entire SPARC V7.0 application software base.

Chapter 4 and 5 deal with the new added functions introduced in the TSC692E to improve the reliability of space
applications. These new functions do not impact the SPARC V7.0 compatibility.

2. TSC692E Overview

2.1. SPARC RISC Standard Functions:

Full compatibility with Standard ANSI/IEEE 754-1985 for binary Floating Point Arithmetic
64-bit Internal Datapath

Based on Floating-Point Unit from SUN

Tightly coupled Integer-Unit interface

2.2. Fault Tolerant and Test MECHANISM | mprovements:

Parity checking on 98% of the total number of latches with hardware error traps

Parity checking of address, data pads and |U/FPU control pads

Master/Checker operation

|EEE Standard Test Access Port & Boundary-Scan Architecture

Possibility to disable the bus parity checking

Manufactured using Atmel Wireless & Microcontrollers Space hardened 0.8 pum SCMOS-RT technology
Part of the ERC32 high performance 32-bit computing core

To support applications requiring an extremely high level of reliability, the following improvements were introduced
in the standard SPARC RISC FPU TSC692E:
® Severa independent fault detection MECHANISMsto support the design of fault tolerant system
like parity checking and master/checker operations.
® Support of sophisticated PC board level tests applicating the |EEE Standard Test Access Port and Boundary
Scan Architecture.
® Hardening of the process by construction, using restricted full static CMOS design rules for al critical blocks of
the circuit such asregister file, ROMs, BUSSES €tc...

Rev. H —02 Dec. 96 1
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e Hardened device processing using the 0.8 um SCMOS-RT TECHNOLOGY.

Thanks to careful handling of the improvements, the introduced modifications have neither reduced the performance
of the device nor changed the full binary compatibility with the entire SPARC V7.0 application software.
Improvementsin FPU design have decreased the power consumption.

2.3. Presentation of the ERC32

The TSC692E Floating Point Unit is, with the TSC691E Integer Unit and the TSC693E (Memory Controller), a part
of the ERC32 Computing Core.

Concept

The objective of the ERC32 is to provide a high performance 32-bit computing core, with which computers for
on-board embedded real-time applications can be built. The core will be characterized by low circuit complexity and
power consumption. Extensive concurrent error detection and support for fault tolerance and reconfiguration will also
be emphasized.

In addition to the main objective the ERC32 core will be possible to use for performance demanding research
applicationsin deep space probes. The radiation tolerance and error masking are therefore important. For the real-time
applications the system might be fail-operational rather than fail-safe. By including support for reconfiguration of the
error-handling the different demands from the applications can be optimized for the best purpose in each case.

The ERC32 will be used as a building block only requiring memory and application specific peripherals to be added
to form a complete on-board computer. All other system support functions will be provided by the core.

Functional Description

The ERC32 will incorporate the followings functions:
® Processor, which consists of oneinteger unit and onefloating point unit. The processor includes concurrent error
detection facilities.

® Memory controller (TSCE693E), which is a unit consisting of all necessary support functions such as memory
control and protection, EDAC, wait state generator, timers, interrupt handler, watch dog, UARTSs and test and
debug support. The unit also includes concurrent error detection facilities.

® Oscillator (optional).

e Buffers necessary to interface with memory and peripherals.

Next figure schematically shows the ERC32 architecture and external functions added to form a compl ete system.

2 Rev. H — 02 Dec. 96
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ERC32 Architecture

3. Standard TSC692E Functions

The TSC692E Floating—Point Unit (FPU) is a high—performance, single—chip implementation of the SPARC reference
floating—point unit. The TSC692E FPU is designed to provide execution of single and double—precision floating—point
instructions concurrently with execution of integer instructions by the TSC691E Integer Unit (1U). The TSCE692E is
compliant to the ANSI/IEEE-754 (1985) floating—point standard.

The TSCE92E provides a 64-bit Fractional/Exponent/Sign internal datapath for efficient execution of
double—precision floating—point instructions. All implemented instructions are executed within hardware. For efficient
data management, the TSC692E provides thirty—two 32-hit floating—point registers. These 32—hit registers can be
concatenated for use as 64-hit registers for double—precision operations. The internal 64-bit architecture of the
TSCB692E allows high speed execution of both single— and double—precision operations.

The SPARC floating—point/integer unit interface supports concurrent execution of integer and floating—point
instructions. Thetightly coupled floating—point/integer unit interface requires the integer unit to provide all addressing
and control signals for memory access. All instructions are fetched by the integer unit, and these instructions are
simultaneously latched and decoded by both the TSC691E and TSC692E. Execution of a floating—point instruction
is enabled by TSC691E, which signals the TSC692E to begin execution of the floating—point instruction when that
instruction reaches the execute stage of the TSC691E instruction pipeline. In the case of afloating—point load or store
instruction, the TSC691E executes the FP load or store in conjunction with the TSC692E by asserting address and
control signals for memory access while the TSC692E loads or stores the data. All other floating—point instructions
execute independently of the integer unit and in parallel with integer instruction execution.

Rev. H —02 Dec. 96 3
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The floating—point/integer unit interface provides hardware interlocking to ensure synchronization between the
TSC691E and TSC692E. Hardware interlocking ensures software compatibility among SPARC systems with different
levels of floating—point performance.

3.1. TSC692E Functional Description

Figure 1. illustrates the functional block diagram for the TSC692E. The fetch unit captures instructions and their
addressesfrom the D[31:0] and A[31:0] busses. The decode unit containslogic to decode the floating—point instruction
opcodes. The execution unit handles all instruction execution. The execution unit includes a floating—point queue (FP
queue), which contains stored floating—point operate (FPop) instructions (see Section 3.3.2) under execution and their
addresses. The execution unit controls the load unit, the store unit, and the datapath unit.

The load unit holds data that is fetched from memory via the data bus before it is written into the register file. The
register file contains the 32 f registers. The exceptiong/floating—point status register (FSR) unit keeps the status of
completing FPops, aswell as the operating mode of the TSC692E. The store unit holds data that is supplied to the data
bus during a store operation. The dependency checking unit checks for conditions where the FPU must freeze the
TSC691E integer unit pipeline so that an incoming instruction does not overflow the floating—point queue. The
datapath unit contains arithmetic logic used by FPops to operate on the data in the register file and is comprised of a
Fractional, Exponent and Sign units. Figure 2. gives amore detailed block diagram of the TSC692E.

The TSC692E provides three types of registers:. f registers, FSR, and the FP queue. The f registers are the thirty-two
floating—point operand registers, each 32-bits in size. Adjacent even—odd f register pairs (for instance, fO and f1 can
be concatenated to support double—precision operands). The FSR is a 32-hit status and control register. It keeps track
of rounding modes, floating—point trap types, queue status, condition codes, and various | EEE exception information.
The floating—point queue contains the floating—point instruction currently under execution, along with its
corresponding address. The floating—point queue provides an efficient method of handling floating—point exceptions.
When an FPop instruction causes a floating—point exception, the queue contains the offending instruction/address pair
aong. The TSC691E integer unit acknowledges the floating—point exception, enters a floating—point trap routine,
empties the queue, and corrects the exception case. After the exception case is corrected, unfinished floating—point
instruction found in the floating—point queue is either executed or emulated in the trap handler before returning to
normal execution.

The TSC692E depends upon the TSCE91E to assert all addresses and control signalsfor memory access. Floating—point
loads and stores are executed in conjunction with the TSC691E, which provides addresses and control signals while
the TSC692E supplies or stores the data. Instruction fetch for integer and floating—point instructions is provided by
the TSC691E. When the TSC69L1E integer unit asserts an address for an instruction fetch, it asserts the INST signal
one clock later. The TSC692E floating—point unit uses INST to determine when a valid instruction is present on the
D[31:0] bus. The instruction, which appears on the data bus on the next clock cycle, is latched and paired with its
corresponding address. In any given cycle, oneinstruction/address pair is stored by the TSC692E, regardless of whether
the instruction is an integer or floating—point instruction. This instruction/address pair may be selected for execution
by the TSC691E upon asserting the FINS1 or FINS2 signal. The FINS1 or FINS2 signals enables a floating—point
instruction to begin execution by the TSC692E.

Upon decoding a floating—point instruction, the TSCE91E will assert the FINSL or the FINS2 signal to enable the
TSCB92E to begin execution. The FINS1 or FINS2 signal is asserted during the decode stage of the floating—point
instruction, and is recognized by the TSC692E at the beginning of the execute stage of the floating—point instruction.
This ensures synchronization of the decode and execute stages of a floating—point instruction between instruction
pipelines of the TSCE91E and the TSC692E.
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Figure 1. TSC692E Functional Block Diagram
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Figure 2. TSC692E Block Diagram (without parity checking)

3.2. Floating—Point/Integer Unit Interface

The TSC692E is designed to directly interface with the TSC691E without external gluelogic. Figure 3. illustratesthe
signals required to interconnect the TSC691E and TSC692E. The control signalsillustrated in Figure 3. are used to
interface with the remainder of the CPU system components. The FNULL, RESET, BHOLD, MHOLDA or MHOLDB,
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MDS, and DOE signals are used by the a Cache Controller(CC) and Memory Management Unit (MMU) for cache
interface and virtual bus arbitration. The signal descriptions for the TSC692E signals are described in Section 3.4.

|
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g o
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AVAWA
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CONTROL SIGNALS

Figure 3. TSC692E Har dware I nterface

3.2.1. TSC692E RT Instruction Fetch and Execution

The TSC692E uses a four—stage instruction pipeline consisting of fetch, decode, execute, and write stages (F, D, E,
and W). The instruction pipelines for the TSC691E and the TSC692E are concurrent and synchronized; a
floating—point instruction will be in the same stage in both processors. Multiple cycle instructions such as
floating—point operate instructions (FPops) |eave the pipeline after the W stage and enter the FP queue until completion.

Addressesfor both integer unit and floating—point unit instructions are supplied by the TSC691E. The TSC692E FPU
latches all instructions and the corresponding addresses from the D[31:0] and A[31:0] busses. The TSC692E uses the
INST signal, supplied by the TSC691E, to identify an instruction fetch by the integer unit.

Decode of the latched instruction occurs on the next clock cycle, with both the IU and the FPU decoding the instruction
simultaneously. During the decode stage of the floating—point instruction, the FPU checks for operand and resource
dependencies. When the TSC691E integer unit decodesaFPop, it assertsthe FINS1 or FINS2 signal. Thisoccursbefore
the end of the decode stage, and is used by the TSC692E to initiate the execution of afloating—point instruction. If the
TSC692E has detected an operand or resource dependency during the decode stage, the FPU will assert FHOLD as
the instruction begins the execution stage. This freezes the integer unit’s pipeline until the FPU can resolve the
dependency.

If no resource or operand dependencies exist, the decoded floating—point instruction begins execution. Instructions
entering execution are stored in the FP queue, where they are held until execution is completed. Note that if the FP

Rev. H —02 Dec. 96 7
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queueisfull during an instruction’s decode stage, the TSC692E asserts FHOL D as the instruction enters the execution
stagein order to halt the TSC691E. FHOLD is released when space becomes available in the FP queue.

The following tables describe the execution phases of TSC692E instructions. Additiona cycles beyond the F, D, E,
and W stages are denoted as Wh (Write hold). Wh stages are equivalent to the additional cycles held by IOPs in the
TSC691E.

Table 1. Load instruction execution

Cycle Action
D stage Decode instruction, check operand dependencies
E stage FHOLD if necessary
W stage Capture datafrom D[31:0] bus (LDF, LDFSR), capture MSW from D[31:0] bus (LDDF).
Wh1 stage Write datainto FP registers or FSR register (LDF, LDFSR), capture LSW from D[31:0] bus (LDDF)
Wh2 stage Write datainto register (LDDF)

Table 2. Storeinstruction execution

Cycle Action

D stage Decode instruction, check operand dependencies

E stage FHOLD if necessary, read data from FSR register or FP queue

W stage (mid—cycle) | Drive data onto D[31:0] bus (STF, STFSR), drive MSW or FP queue address onto D[31:0] bus (STDF, STDFQ)

Wh1 stage Stop driving D[31:0] bus (STF, STFSR), drive LSW or FP queue opcode onto D[31:0] bus (STDF, STDFQ)
(mid—cycle)

Wh2 stage Stop driving D[31:0] bus

(mid—cycle)

Table 3. FPop execution

Cycle Action
D stage Decode FPop, check resource and operand dependencies
E stage FHOLD if necessary, read operand(s) from register file
W stage Read any additional operands from register file; start computing results
FP Queue Compute, FPop in queue
FP Queue Check exception status
FP Queue Update FSR, write results or signal FP exception trap if necessary

3.2.1.1. Instruction Fetch

As the TSCB91E fetches an instruction, the TSC692E captures it at the same time from the D[31:0] bus. The address
corresponding to this instruction is captured from the A[31:0] in the previous cycle. The INST signal is used to
determine when avalid instruction is present on the D[31:0] bus, and when a valid address has been fetched from the
A[31:0] bus in the previous cycle. Figure 4. illustrates an example of an instruction fetch with a cache hit. The
transactions on the address and data busses show two instruction fetches followed by a data fetch.
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CLK I O I S D
INST AKX/ ./

gz XXXt XXX sz X XXX et )OO0 13 X0
asro (CAL YRR A2 X000@aaA) XXX Az XXX XXX

Figure 3. Instruction Fetch (Cache Hit)
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Figure 4. Instruction Fetch (Cache Misson A2)

In the case of an instruction cache miss, amemory hold signal (MHOLDA, MHOLDB, or BHOLD) is driven low by
the cache system starting in the cycle following the instruction fetch. The instruction which was captured from the
D[31:0] busisinvalid and is replaced when the system returns avalid instruction on the D[31:0] bus. The hold signal
lasts for several cycles during which time the MDS signal is asserted by the cache system, notifying the TSC692E that
the valid instruction is available on the D[31:0] bus. MDS is also used when there is a cache miss on data (via load
instructions) so theinstructionisreloaded only if INST was asserted in the previous non-hold cycle. The same sequence
of transactionsin Figure 4. are used in Figure 5. , except that the second instruction fetch (Inst 2) experiences a cache
miss.

3.2.1.2. Instruction Execution

The FINS1 and FINS2 signals notify the TSCE692E when to launch a floating—point instruction. When FINSL/FINS2
is received, the floating—point instruction is in the D stage of the TSCE91E integer unit pipeline. The example in
Figure 6. shows a situation where both FINS1 and FINS2 are used. A load instruction is followed by two FPops. The
first FPop is fetched while the load instruction is executing. Because the load takes more than one cycle to execute,
the starting of the FPop is deferred, and thus the instruction is held in the instruction buffer of the TSC692E. When
the TSC691E reaches the D stage of the first FPop (Inst 2), it issues FINS2 to start the FPop. When the D stage of the
second FPop (Inst 3) isreached, FINSL isissued to start the second FPop.
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FINS1 and FINS2 are never asserted in the same cycle. Both FINS1 and FINS2 areignored in the following conditions:
1- FLUSH is asserted.
2- MHOLDA, MHOLDB, BHOLD,CHOLD, or FHOLD is asserted.
3-FCCV or CCCV is deasserted.

FETCH Inst 1 Inst 2 Inst3 Data

DECODE Instl Inst 1 (hold) Inst 2 Inst 3

EXECUTE Instl Inst 1 (hold) Inst 2 Inst 3

WRITE Inst 1 Inst 1 (hold) Inst 2 Inst 3

CLK | | |
ot O K2 ) KKK

V4
VAN e <G\

Load (1U) FPops Fins2 starts Inst2 Finsl starts Inst3

Figure 5. Floating—Point Instruction Dispatching

reon | et

DECODE | FCMP Next

EXECUTE FCMP ke

WRITE FCMP

ST N e N s S e N s O e
((
f

FINSL/2 4/7_\

FCCV \

CC[1: /
S XRXOGORIRN o )

Fins signal corresponding to FCMP instruction

Figure 6. Floating—Point Compare (FCM P) Execution

10 Rev. H —02 Dec. 96



AMEL TSCE92E

3.2.1.2.1. Floating—Point Compar e Execution

Floating—point compare instructions cause the instruction pipeline to be frozen by the use of FCCV, starting from the
E stage of the instruction following the compare instruction until the FCC condition codes become valid. FCCV is
deasserted, causing the TSC691E to HALT execution until FCCV is asserted. Figure 7. illustrates the timing of FCCV
relative to the FCMP instruction and the FCC condition codes.

FCCV is deasserted in the W stage of the FCMP instruction. The instruction that immediately follows the FCMP is
heldinitsE stage until FCCV isreasserted. FCC[1:0] isvalid one cycle before FCCV isreasserted. For unimplemented
compare instructions, the TSC692E freezes the instruction pipeline and causes an unimplemented FPop trap, which
the TSCB91E takes immediately.

3.2.1.2.2. FPop Queuing

When a FPop has passed thefirst cycle of the W stage and FLUSH has not been asserted, the FPop entersthe FP queue.
Note that the W stage of an FPop may be extended to more than one cycle if a hold condition exists. As an FPop
compl etes execution successfully and results are written to the register file, it is removed from the FP queue.

3.2.2. Instruction Pipeline Flush

When atrap or interrupt occurs in the integer unit, normal program execution is HALTed and control is transferred to
the trap handler. Theinstruction in the E stage of the pipeline and any instructions fetched after it are aborted and must
be restarted after the trap handler is done (or emulated in the trap handler). Instructions that have not yet been
transferred to the FP queue are aborted by the TSC692E when the trap occurs. The TSC691E assertsthe FLUSH signal
in the W stage of the instruction to be aborted (refer to Figure 8. ). FPop which was issued before this instruction
continues execution (and isin the queue) while instructions issued after it are aborted.

Thefollowing figuresillustrate how each type of floating—point instruction is affected by the FLUSH signal. Figure 9.

illustrates the effect of the FLUSH signal during a load floating—point instruction (LDF). A FLUSH signal asserted
anytime on or before the last Wh stage of a load instruction causes the load to abort, leaving the contents of the
floating—point register file unchanged.

Figure 10. illustrates the effect of FLUSH on a store floating—point instruction (STF). A FLUSH signal asserted on
or before the last Wh stage of a store instruction causes the store to abort and the TSC692E to stop driving the D[31:0]
bus by the middle of the next clock cycle.

Figure 11. illustrates the effect of FLUSH on a FPop instruction. A FLUSH signal asserted anytime on or before the
W stage of a FPop instruction causes the FPop to abort, leaving the contents of the register file and the FSR unchanged
by that instruction. FPop that has passed the W stage but is still executing (stored in the FP queue) is not affected.

Figure 12. illustrates the effect of FLUSH on a floating—point compare. FLUSH asserted in the W stage of a FCMP
instruction causes the FCMP to abort, leaving the FSR unchanged by that instruction. FCCV is reasserted in the next
clock cycle.

FETCH Inst 2 Inst 3 Inst 4
DECODE Inst 1 Inst2 Inst 3 Inst 4

Inst 3 Inst 4
EXECUTE Inst 1 Inst2 Trap recognized  Aborted
WRITE Inst 1 Inst2

Inst 3
Aborted

CLK _|_\ | | I_
FLUSH /_\—

Figure 7. Floating—Point Instruction Pipeline During A Trap
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D E w Wh
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s XXX/ XXX X IXXIIRKK
o XOOXKN T XX KRN TIXXX

-
Assertion of FLUSH during this period aborts LDF instruction l

Figure 8. Effect of FLUSH on LDF Instruction

D E w Wh1 Wh2

CLK

FINSL2 W XOXXKROOROXXKKIOXXIOOXNKIINX
oi31:01 XXXXXXXX OO IR0 darzy QOOOOOXN_ XXXX

< Assertion of FLUSH during this period aborts STF instruction
Figure9. Effect of FLUSH on STF Instruction
D E W
CLK

Ansuz YOOKK/ N\LOAKROXKINKIXX
ora] XX XK XXX XERR)
|

-
Assertion of FLUSH during this period aborts FPop instruction

Figure 10. Effect of FLUSH on FPop I nstruction
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FETCH NEXT INSTR

DECODE FCMP NEXT INSTR
EXECUTE FCMP NEXTINSTR | NEXTINSTR
(held)

WRITE FCMP NEXT INSTR
(Aborted)

CLK

FINSL/2

Fcov \ > /

FLUSH ¢ \

{ -
FINS signal correspondin
to FCM% instruc% 9

Figure 11. Effect of FLUSH on FCMP Instruction

3.2.2.1. Hold Signals

If MHOLDA, MHOLDB, BHOLD, CHOLD, or FHOLD is active, or FCCV or CCCV is inactive, the instruction
pipelines of the TSC691E and TSC692E are frozen. FHOLD and FCCV are generated by the TSC692E, CHOLD and
CCCV are generated by the coprocessor, and the others are generated by the system.

In the TSC692E, “freezing” or “holding” the instruction pipeline means that instructions that are still being tracked
by the TSC691E are not allowed to continue executing. The instructions are allowed to continue execution when all
of the hold signals are inactive and all of the condition code valid signals are active. Holds affect all load/store
instructions, and only FPopswhich areintheF, D, E and W stages of theinstruction pipeline. Hold signals do not affect
the execution of a FPop in the FP queue.

3.2.2.2. Interlocking with FHOL D

In some situations it is necessary to stop the TSC691E pipeline, either because a FP load/store instruction must be
suspended due to an operand dependency, or because the TSC692E cannot accept any more instructions due to a
resource dependency. FHOLD is used to freeze the instruction pipeline in these cases. Table 4. describes mandatory
conditions under which FHOLD is asserted.

Operand dependencies listed in Table 4. apply to all FPops that are defined in the architecture. For example, suppose
an unimplemented FPop isin the FP queue, waiting to cause an exception. If astoreinstruction isissued to the TSC692E
to store the contents of the unimplemented FPop’ s destination register, the store instruction must cause a FHOLD so
that the wrong data is not stored. The unimplemented FPop eventually causes a trap that is taken by the TSC691E in
the E stage of the store instruction.

Thefollowing simplification could be applied when handling al unimplemented FPops: when an unimplemented FPop
has been issued to the TSC692E but has not yet caused a trap, assert FHOLD on the next floating—point instruction
issued until FEXC is asserted. There is no loss in performance because any FPops entering the FP queue after the
unimplemented FPop would be re-executed after the unimplemented FPop has been taken care of in the trap handler.
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Table 4. FHOL D Resour ce/Oper and Dependency Cases

Resour ce Dependencies:

If the TSC692E will not have FP queue entry available to accommodate additional FPops, the TSC692E asserts FHOLD to stop the TSC691E from
issuing any more instructions to the TSC692E.

Operand Dependencies:

LDF, Load data from Load instructions must not overwrite the source or destination registers of any FPop that has not

LDDF memory to f register completed execution. In other words, the rd. field of the load instruction must not refer to the same f
register asany valid rsl, rs2 or rd field of an outstanding FPop. The source registers of FPops (rsl, rs2)
may not be altered because an FP exception trap would require that the source registers be unaltered for

the trap handler.

STF, Store data from f If astore instruction accesses an f register that is the destination register of an FPop that has not yet

STDF register to memory finished execution, the store instruction waits until all outstanding FPops with that register asa

destination are complete.

LDFSR, Load/store data If any instructions are currently executing in the TSC692E when a LDFSR/STFSR instruction isissued

STFSR between memory and | by the TSC691E, the TSC692E holds until al instructions have completed execution and are no longer in
floating—point status | the FP queue.
register If aLDFSR instruction is currently executing in the TSC692E when an FPop or STFSR isissued by the

TSC691E, the TSC692E holds until LDFSR instruction has completed execution..

STDFQ Store FP queue while | If aSTDFQ isissued by the TSC691E when the Floating-Point Queue is empty (gne=0) and the
gne=landin TSC692E isin execution mode, the TSC692E holds until STDFQ instruction has completed execution.
execution mode

UNIMP Unimplemented FP If an unimplemented FPop has been issued to the TSC692E but has not yet caused atrap, the TSC692E
operation holds on the next floating—point instruction issued by the TSC691E.

If the TSC692E goesinto exception mode, FHOLD is deasserted. If thereisafloating—point sequence error (see Section
3.3.3), FHOLD is asserted for two cycles. Thisis the only case where FHOLD is asserted in the exception mode.

If afloating—point trap condition occurswhile FHOLD is asserted, FHOLD is deasserted at least one cycle after FEXC
isasserted. Similarly, if FCCV is deasserted, it is reasserted at least one cycle after FEXC is asserted. For the FHOLD
case, the TSC691E takes the FP trap on the FP instruction that triggered the FHOLD.

3.22.3. FNULL Signal

FNULL isused to signal apipeline delay of the TSC691E by the TSC692E. FNULL replaces FCCV and FHOLD for
informing the system that the pipeline is being held. FNULL is asserted when either FHOLD is asserted or FCCV is
deasserted. Thissignal isused as an input by the CC and MMU to monitor pipeline freezes initiated by the TSC692E.

3.3. TSC692E Programming Model

3.3.1. TSC692E Registers

The TSC692E has three types of user accessible registers: the f registers, the FP queue, and the Floating—point Status
Register (FSR). The f registers are the TSC692E data registers. The FSR is the TSC692E status and operating mode
register. The FP gueue contains the TSC692E instruction that has started execution and is awaiting completion. The
following section describes these registersin detail.

3.3.1.1. f Registers

The TSC692E provides 32 registers for floating—point operations, referred to as f registers. These registers are 32 bits
in length, which can be concatenated to support 64—bit double words. Extended precision instructions are not supported
in the TSC692E. Figure 13. illustrates the data organization for the f registers.

Integer and single precision data requires a single 32-hit f register. Double precision data requires 64 hits of storage
and occupies an even—odd pair of adjacent f registers.

The TSC692E forces register addressing to match the data type specified by the floating—point instruction. Thisensures
data alignment in the f register file for double precision data. Figure 14. illustrates how the TSC692E uses the five
register address bits in a floating—point instruction for the different types of data. Single data word transfers (integer,
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single-precision floating—point) can be stored in any register. Consequently, al five bits of the register address
specified in the floating—point instruction are valid. Double precision data must reside in an even—odd pair of adjacent
registers. By ignoring the LSB of the register address for a FPop requiring a register pair, the TSC692E ensures data
alignment.

fO fl f2 3
f4 5 f6 f7
8 f9 f10 f11

f12 f13 f14 f15
f16 f17 f18 19
f20 f21 f22 f23
f24 f25 26 f27
f28 f29 30 f31

Double precisiondata | MSW ~ LSW | MSW  LSW |

Single precision or signed integer data | \ | \ |

Figure 12. f Register Organization

fe— d, rsl, —>
or rs2 field
of FPinstruction

Single precision and integer data All five bits of register address are used

Double precision data LSB isignored

Figure 13. f Register Addressing

3.3.1.2. FP Queue

The TSC692E maintains a floating—point queue of the instruction that has started execution, but has yet to complete
execution. The FP queueis used to accommodate the multiple clock nature of floating—point instructions and to support
the handling of FP exceptions.

When the TSC692E encounters an exception case, it asserts FEXC and enters pending exception mode. The TSC692E
remains in pending exception mode until the TSCE691E encounters another floating—point instruction, at which time
the TSCB91E asserts the FXACK signal to force the TSC692E into exception mode. When the TSC692E enters the
exception mode, floating—point execution halts until the FP queue is emptied. This allows the TSC691E to store the
floating—point instructions under execution when the exception case occurred. Emptying the FP queue frees the
TSC692E for use by the trap handler without |osing the pre—exception state of the TSC692E.

The FP queue contains the 32-hit address and 32-hit FPop instruction of one instruction under execution.
Floating—point load and store instructions and FP branch instructions are not queued. The entry of the FP queue is
accessible by executing the store double floating—point queue (STDFQ) instruction. A load FP queue instruction does
not exist, as the FP queue must be loaded by launching instructions.
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| RD | RP | TEM |NS| R '\/ERSIONl FTT |QNE| Rl FCC | AEXC CEXC
31 3029 2827 2322 21 2019 1716 14 13 12 11 109 54 0
TEM AEXC CEXC
|nvm|ofm|ufm|dzm|m(m| |nva|ofa|ufa|dza|nxa| |nvc|ofc|UfC|dzc|nxc|

Figure 14. Floating—Point Status Register

3.3.1.3. Floating—Point Status Register (FSR)

The following paragraphs describe the bit fields of the floating—point status register (FSR). Refer to Tableb.
(following page) for bit assignments for the FSR fields.

RD FSR(31:30). Rounding Direction: These two bits define the rounding direction used by the TSC692E during an
FP arithmetic operation.

RP FSR(29:28). Unused - always set to 0.

TEM FSR(27:23). Trap Enable Mask: These five bits enable traps caused by FPops. These bitsare ANDed (1= enable,
0= disable) with the bits of the CEXC (current exception field) to determine whether to force afloating—point exception
to the TSCB91E. All trap enable fields correspond to the similarly named bit in the CEXC field (see below). The TEM
field only affects which bitsin the CEXC field will cause the FEXC signal to be asserted.

NS FSR(22). Non-Standard floating point: This bit is aways set to 0 (IEEE mode).

version FSR(19:17). The version number is used to identify the SPARC floating—point processor type. This field is
set to 100 (4H) for the TSC692E, and is read—only.

FTT FSR(16:14). Floating—point Trap Type: This field identifies the floating point trap type of the current FP
exception. Thisfield can be read and written, and must be cleared by software.

QNE FSR(13). Queue Not Empty: This bit signals whether the FP queue is empty. (0= empty, 1= not empty)
FCC FSR(11:10). Floating—point Condition Codes: These two hits report the FP condition codes (see Table 5. ).

AEXC FSR(9:5). Accumulated EXCeptions: Thisfield reports the accumulated FP exceptions that are masked by the
TEM field. All masked exception cases are ORed with the contents of the AEXC and accumulated as status. All
accumulated fields have the same definition as the corresponding field for CEXC (see below). This field can be read
and written, and must be cleared by software (see Table 5. ).

CEXC FSR(4:0). Current EXCeptions. Thisfield reports the current FP exceptions. Thisfield isautomatically cleared
upon the execution of the next floating—point instruction. CEXC status is not lost upon assertion of a floating—point
exception, becauseinstructions following avalid exception are not executed by the TSC692E. The five CEXC hitsare:
nvc=1 indicatesinvalid operation exception. Thisis defined as an operation using an improper operand

value. An example of thisis 0/0.

ofc=1 indicates overflow exception. The rounded result would be larger in magnitude than the largest
normalized number in the specified format.

ufc=1 indicates underflow exception. The rounded result isinexact, and would be smaller in magnitude
than the smallest normalized number in the indicated format.

dzc=1 indicates division-by—zero: X/0, where X issubnormal or normalized. Note that 0/0 does not set
the dzc hit.

nxc=1 indicates inexact exception. The rounded result differs from the infinitely precise correct result.

R FSR 21,20 and 12. Reserved - always set to 0.
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Table 5. Floating—Point Status Register Summary

. FSR Description L oadable by
Field Values bits LDFSR
RD 0 - Round to nearest (tie-even) 31:30 | Rounding Direction yes
1-Roundto 0
2-Roundto +
3-Roundto-
RP Unused Bits 29:28 | Unused adways set to 0 no
TEM 0- Disabletrap 27:23 | Trap Enable Mask yes
1- Enabletrap
NVM 27 invalid operation trap mask
OFM 26 overflow trap mask
UFM 25 underflow trap mask
DzM 24 divide by zero trap mask
NXM 23 inexact trap mask
Non-standard Floating—point: no
0- Dissble 0 = IEEE mode; multiplier and ALU generate denormalized
NS 2 operand exceptions and produce unrounded normalized values
on underflow exceptions.
1 =FAST mode; multiplier and ALU flush denormalized
1- Enable
operands to zero and round underflow results to zero.
version |0-7 19:17 | FPU version number no
FTT 0- None 16:14 | Foating—point trap type no

1 - |IEEE Exception

2 - Unfinished FPop

3 - Unimplemented FPop

4 - Sequence Error

5 - Data Bus Error

6 - Restartable Error

7 - Non-Restartable Error

ONE 0 - queue empty 13 Queue Not Empty no

FCC 0-= 11:10 | Floating—point Condition Codes yes
1-<
2->
3 - Unordered

AEXC 9:5 Accrued Exception Bits yes

NVA 9 accrued invalid exception
OFA 8 accrued overflow exception
UFA 7 accrued underflow exception
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Fidd values l;i.l;z Description Lol?g?:béeRby
DXA 6 accrued divide by zero exception
NXA 5 accrued inexact exception

CEXC 4.0 Current Exception Bits yes
NVC 4 current invalid exception
OFC 3 current overflow exception
UFC 2 current underflow exception
DzC 1 current divide by zero exception
NXC 0 current inexact exception

r Always set 10 0 21,150, reserved bits no

3.3.2. TSC692E Floating—Point I nstructions

SPARC floating—point instructions are separated into three groups:. floating—point load/store, floating—point branch
(FBfcc), and floating—point operate instructions (FPops). Floating—point |oad/store instructions are used to transfer
datato and from the data registers (f registers). FP load/store instructions also alow the TSC691E integer unit to read
and write the floating—point status register (FSR) and to read the entry of the floating—point queue. Floating—point load
and store instructions are executed by both the TSC691E and the TSC692E; the TSC691E supplying all address and
control signals for memory access and the TSC692E loading or storing the data.

Floating—point branch (FBfcc) instructions (and coprocessor branch instructions (CBccc)) are executed by the
TSC691E, sincethe TSCE91E isresponsiblefor generating address and control signalsfor memory access. Conditional
FBfcc branches are based upon the FCC[ 1:0] signals supplied by the TSC692E. FCC[1:0] is set by executing a FCMP
instruction, which belongs to the FPop group of instructions. Floating—point branch instructions will cause the
TSC691E to recognize a pending floating—point exception in the same manner as other floating—point instructions (see
Section 3.3.3).

FPops include all other floating—point instructions executed by the TSC692E. Floating—point operate instructions
(FPops) include basic numeric operations (add, subtract, multiply, and divide), conversions between datatypes, register
to register moves, and floating—point number comparison. FPops operate only on data in the floating—point registers.

The SPARC architecture supports four data types. 32—-hit signed integer, single—precision FP, double—precision FP, and
extended—precision FP. Extended precision instructions are defined in the SPARC architecture, but are not supported
in the TSCB692E. The TSC692E supports execution of extended precision floating—point instructions by asserting an
unimplemented instruction trap. This allows the TSC691E to trap to a software emulation of extended precision
floating—point.

Seven load/store instructions are executed by the TSC692E. The following describes the TSC692E |oad/store
instructions:

LDF and LDDF transfer data from memory to f registers 32 and 64 bits at atime, respectively.
STF and STDF transfer data from the f registers to memory in data widths of 32 and 64 hits.
LDFSR and STFSR alow the FSR to be read and written to.

STDFQ isaprivileged instruction which allows the FP queue to be read.

All FPops operate only on data located in the f registers. The FPops are divided into four groups: basic arithmetic
operations, compares, format conversions, and register—to—register moves. Move operations do not cause exceptions.
The converts, moves and the square root instruction use only a single source operand. FP compare instructions modify
only the FCC[1:0] signals. FPops are dispatched in one cycle in the TSC691E, and require multiple cycles to execute
in the TSC692E.

Table 6. and Table 7. illustrate the TSC692E instructions and their execution cycle count. For further information on
the SPARC floating—point instructions, please refer to Chapter 6, SPARC Instruction Set.
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Table 6. Floating—Point L oad and Store Instruction Cycle Count

Mnemonic Operation Cycles
LDF load floating—point 2
LDDF load double floating—point 3
LDFSR load FSR 2
STF store floating—point 3
STDF store floating—point double 4
STFSR store FSR 3
STDFQ store double FP queue 4
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Table 7. Floating—Point Oper ate (FPops) I nstruction Cycle Count

M nemonic Operation Cycledd
Min. M ax. Typ.

FABSs absolute value 2 2 2

FADDs add single 4 4 17
FADDd add double 4 4 17
FCMPs compare single 4 4 15
FCMPd compare double 4 4 15
FCMPEs compare single and exception if unordered 4 4 15
FCMPEd compare double and exception if unordered 4 4 15
FDIVs divide single 6 20 38
FDIVd divide double 6 35 56
FMQVs move 2 2 2

FMULs multiply single 5 5 25
FMULd multiply double 7 9 32
FNEGs negate 2 2 2

FSQRTs square root single 6 37 51
FSQRTd square root double 6 65 80
FSUBs subtract single 2 4 17
FSUBd subtract double 4 4 17
FdTOI convert double to integer 7 7 14
FdTOs convert double to single 3 3 16
FiTOs convert integer to single 5 6 13
FiTOd convert integer to double 4 6 13
FsTOI convert single to integer 6 6 13
FsTOd convert single to double 2 2 14

[a]. These cycle counts assume that the operands are available in the register file. A load-use interlock may add up to 2 cycles to the typical
cycle count.
[b]. Max. Cyclesisfor NaN and Denormalized subresults.

3.3.3. TSC692E Internal Operation

The TSC692E operates in one of three modes: execution mode, pending exception mode, and exception mode (see
Figure 16.). After reset, the TSC692E enters execution mode, which is the normal mode of operation. When the
TSC692E encounters a floating—point exception condition, the TSC692E asserts FEXC and enters the pending
exception mode. All FPop instructions under execution at this point are suspended. The TSC691E asserts FXACK and
enters the floating—point trap when the next floating point instruction is encountered. Upon receiving FXACK, the
TSC692E FPU enters exception mode. The TSC692E returns to execution mode as soon as the trap handler empties
the FP queue using STore Doubl e Floating—point Queue instructions (STDFQ).

3.3.3.1. Exception Handling

Upon encountering an exception condition, the TSC692E asserts FEXC to notify the TSC691E that a floating—point
exception has occurred and enters the pending exception mode. The TSC691E enters the trap handler on the next
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floating—point instruction it encountersin the instruction stream, asserting FXACK to signal to the TSC692E that the
trap isbeing taken. At this point, the TSC692E enters exception mode and the FP queue containsinstruction and address
of the FP operation which caused the FP exception (see Figure 16. ).

Upon receiving FXACK from the TSC691E, the mode of the TSC692E changes from pending exception to exception
mode. An FP exception can only be caused while the FPU is moving between these two modes or by executing STDFQ
when FP queue is empty (gne field in FSR equal to 0). All FPops in the TSCE692E stop executing during pending
exception and exception modes. While in exception mode, the TSC692E will execute only store floating—point
instructionsuntil the FP queueisemptied. All floating—point storeinstructions are allowed whilein this operating mode
(particularly STDFQ and STFSR) and they cannot cause an exception trap. Any load or FPop issued to the TSC692E
while in this mode causes a sequence error and returns the TSC692E to exception pending mode and sets the ftt
sequence error field in FSR. The instruction that caused the sequence error is not entered into the FP queue. Once the
queue is emptied by STDFQ instruction, the TSC692E returns to execution mode.

If a STDFQ instruction is executed when the FP queue is empty (gne field in FSR equal to 0, FPU in execute mode),
the FPU generates an immediate trap and sets the ftt field in FSR to sequence error, but the FPU remainsin the execute
mode.

Figure 17. illustrates the handshake of signals between the TSC691E and the TSC692E during a floating—point
exception. The gne (queue not empty) bit of the FSR is shown in Figure 17. to illustrate the dependency of clearing
the FP queue to return to execution mode.

Reset

FPEXCEPTION
Empty FP queue

Sequence error

Pending

Exception Exception

FXACK

Figure 15. FPU Operation Modes
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ONE \_
FEXC _\ g 4
FXACK / (z
L
f

FLUSH /
/

/

Floating point exception occurs; TSC691E executes FP instruction, STDFQ instructi onsare executed and queue
FEXC=0 takes FPtrap; FXACK = 1; FLUSH =1 is cleared; QNE field of FSR=0;
Pending exception mode of 90C602E Exception mode of TSC692E Return to execution mode of TSC692E

Figure 16. Floating—Point Exception Handshake

3.3.4. TSC692E |EEE-754 Compliance

The TSC692E meets the requirements of the |IEEE Std. 754—1985 for floating—point arithmetic. Accuracy of the results
of its operations are within +%, LSB, as specified by the |EEE standard. The following sections describe the |EEE
format as implemented on the TSC692E.

3.3.4.1. |[EEE Definitions
The following terms are used extensively in describing the |IEEE-754 floating—point data formats. This section is
directly quoted from the IEEE Standard for Binary Floating—Point Arithmetic.

biased exponent

The sum of the exponent and a constant (bias) chosen to make the biased exponent’s range nonnegative. (Note
in the remainder of this section, the term “exponent” refers to a biased exponent.)

binary floating—point number

A bit string characterized by three components. a sign, a signed exponent and a significand. Its numerical
value, if any, isthe signed product of its significand and two raised to the power of its exponent.

Denormalized

Denormalized numbers are those numbers whose magnitude is smaller than the smallest magnitude
representable in the format. They have a zero exponent and a denormalized non—zero fraction. Denormalized
fraction means that the hidden bit is zero.

The TSC692E can directly operate on denormalized operands. The TSC692E never assert an unfinished FPop
exception when an operation results in a denormalized number.

denormalized number

(DNRM) A non—zero floating—point number whose exponent has a reserved value, usualy the format's
minimum, and whose explicit or implicit leading significand bit is zero. (Denormalized numbers are aso
referred to as subnormal in thistext.)

fraction
Thefield of the significand that lies to the right of itsimplied binary point.
NaN

Not a number, a symbolic entry encoded in floating—point format. They are used to signal invalid operations
and asaway of passing statusinformation through a series of calculations. NaNsarisein one of two ways: they
can be generated by the TSC692E upon an invalid operation or they may be supplied by the user as an input
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operand. NaN isfurther subdivided into two categories: quiet and signaling. Signaling NaNs signal theinvalid
operation exception whenever they appear as operands. Quiet NaNs propagate through almost every
arithmetic operation without signaling exceptions.

Normalized

Most calculations are performed on normalized numbers. For single—precision, they have a biased exponent
range of 1to 255, which resultsin atrue exponent range of -126 to +127. The normalized number typeimplies
anormalized significand (hidden bit is 1).

significand

The component of a binary floating—point number that consists of an explicit or implicit leading bit to the left
of itsimplied binary point and afraction field to theright.

true exponent

The component of a binary floating—point number that normally signifies the integer power to which 2 is
raised in determining the value of the represented number.

Zero

ThelEEE zero hasall fieldsexcept the sign field equal to zero. The sign bit determinesthesign of zero (i.e., the
|EEE format definesa+0 and a -0).

3.3.4.2. |EEE Floating—point Data For mats

The TSC692E directly supports single- and double—precision floating—point data formats. Extended—precision
instructions (non-implemented) encountered by the TSC692E cause an unimplemented instruction trap to be asserted
by the TSC692E. This allows software to emulate extended—precision instructions through the use of a trap handler.
Single— and double-precision formats are described in this section.

MSB LS
(s) exponent (e) fraction (f) B_I
31 30 2322 0

Figure 17. SinglePrecision Floating—Point For mat

MSB LS
()| exponent (€) fraction (f)

63 62 5251 3231 0

L Il |

31 word 0 031 word 1 0

Figure 18. Double—Precision Floating—Point For mat

3.3.4.2.1. Single-Precision Floating—Point

Single—precision floating—point dataare 32—hitswide and consist of threefields: asingle sign bit (s), an eight—hit biased
exponent (€), and a 23-hit fraction (f). Figure 18. illustrates the single—precision floating—point format.

The | EEE standard defines single—precision floating—point numbers according to the following conventions:
(+0, -0) If e=0andf =0, thenthevalueV = (-1)5* (0) Notethat two representations of zero
exist, one positive and one negative
DNRM (denormalized) If e=0andf # 0, thenthevalueV = DNRM

Normalized If 0< e< 255, thenvalueV = (-1)S* (28127) * (1.f) Note that 1.f isthe significand.
The one to the left of the binary point isthe so—called “hidden bit.” Thisbit is not
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stored as part of the floating—point word; it isimplied. For a number to be
normalized, it must have this one to the | ft of the binary point.

(+o0, —0) If e=255andf =0, thenvalueV = (-1)S Oco
NaN (not a number) If e=255and f Z 0, then value V = NaN.

Thevalueisaquiet NaN if thefirst bit of thefractionis1, and asignaling NaN if the
first bit of the fraction is O (at least one bit must be non—zero).

3.3.4.2.2. Double—Precision Floating—Point

Double—precision floating—point data are 64—-bits wide and consist of three fields: a single sign bit (s), an eleven—hit
biased exponent (€), and a 52—bit fraction (f). Figure 19. illustrates the double—precision floating—point format.

The |EEE standard defines double—precision floating—point numbers according to the following conventions:

(+0, -0) Ife=0andf=0,thenvaueV = (-1)5* (0)

DNRM Ife=0andf Z0, thenvalueV = DNRM
Normalized If 0 < e< 2047, thenvalueV = (-1)S* (281023) * (1f)
(+o0, —00) If e=2047 andf =0, thenvalueV = (-1)S* o

NaN If e= 2047 and f £ 0, then valueV = NaN.

Thevaueisaquiet NaN if thefirst bit of thefractionis 1, and asignaling NaN if thefirst bit of thefractionis0
(at least one bit must be non-zero).

3.3.5. NaN Format

The TSC692E uses different NaN format. Table 8. and Table 9. give returned values for untrapped floating-point
result.

Table 8. Untrapped FP result in same format as operand

RS2, RS1 number QNaN2 SNaN2
none |EEE 754 QNaN2 ME_NaN
number |EEE 754 QNaN2 ME_NaN
QNAN1 QNaN1 QNaN1 ME_NaN
SNAN1 ME_NaN ME_NaN ME_NaN

- QNaN results have their sign bit equal to 0.
- ME_NaN isOx 7fff 0000 (Single Precision)
- ME_NaN is0x 7fff €000 0000 0000 (Double Precision)

Table 9. Untrapped FP result in different format

RS2 Operation +QNaN -QNaN +SNaN -SNaN
fstoi +imax -imax +imax -imax
fstod (QNaN2) (QNaN2) ME_NaN ME_NaN
fdtos ME_NaN ME_NaN ME_NaN ME_NaN
fdtoi +imax -imax +imax -imax

- -imax is Ox 8000 0000

- +imax is Ox 7fff ffff

- (QNaN2) isacopy of the mantissa bits of the operand, with the extralow
- order bits zeroed, and the sign bit zeroed
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3.3.6. TSC692E Exception Cases

The following section describes the TSC692E exception cases, including exceptions specified by the |IEEE-754
standard.

Unfinished FPop. In |EEE-754 standard, this exception case can occur when operations on normalized floating—point
numbers either encounter a denormalized operand or produce a denormalized result. This exception case is asserted
upon executing any FPop encountering a NaN as one of the operands. The TSC692E never asserts this exception since
al implemented instructions are executed within hardware.

Unimplemented FPop. This exception is asserted by the TSC692E upon encountering a defined SPARC FPop
instruction that is not supported by the TSC692E. This includes all operations using extended-precision format
operands. The trap handler is expected to emulate the unimplemented instruction.

Sequence Error. This exception is asserted by the TSC692E when a floating—point instruction (other than FP store)
is attempted after the TSC692E has entered either pending exception or exception mode. The TSC692E suspends all
instruction execution with the exception of FP stores until the FP exception has been acknowledged and the FP queue
has been cleared.

| EEE Exceptions. This class of exceptions is defined as part of the IEEE-754 Standard. The five exceptions defined
as |EEE Exceptions are reported in the CEXC and AEXC fields of the FSR. These exceptions are: invalid, overflow,
underflow, division—by—zero, and inexact. The only exceptions that can coincide are inexact with overflow and inexact
with underflow. The following paragraphs discuss these exception cases.

Invalid Operation. The invalid operation exception is signaled if an operand is invalid for the operation to be
performed. The result, when the exception occurs without a trap, shall be a quiet NaN provided the destination has a
floating—point format. The invalid operations are

1- Any operation on asignaling NaN

2 - Addition or subtraction: Magnitude subtraction of infinities such as (+) + (-)

3 - Multiplication: 0 X co

4 - Division: 0/0 or co / co

5- Squareroot if the operand is less than zero

6 - Conversion of a binary floating—point number to an integer or decimal format when overflow,
infinity, or NaN precludes afaithful representation in that format and this cannot otherwise be signaled

7 - Floating—point compare operations. when one or more of the operands are NaN
Division—by-—zero.

If the divisor is zero and the dividend is afinite nonzero number, then the division by zero exception shall be signaled.
The result, when no trap occurs, shall be a correctly signed 1.

Overflow.

The overflow exception shall be signaled whenever the destination format’s largest finite number is exceeded in
magnitude by what would have been the rounded floating—point result were the exponent range unbounded. The result,
when no trap occurs, shall be determined by the rounding mode and the sign of the intermediate result as follows:

1- Round to nearest carries al overflowsto 1 with the sign of the intermediate result
2 - Round toward O carries all overflowsto the format’s largest finite number with the sign of the
intermediate result.
3 - Round toward - carries positive overflows to the format’s largest positive finite number, and carries
negative overflows to —oo.
4 - Round toward + carries negative overflows to the format’s most negative finite number, and carries
positive overflows to +co.

Underflow.

The TSC692E asserts an underflow exception when the rounded result is inexact and would be smaller in magnitude
than the smallest normalized number in the specified format.
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I nexact.

The inexact exception is generated whenever there is aloss of accuracy (or significance) in the result. The TSC692E
computes results to higher precision than the number of fraction bitsin the format. If any of the fraction bits to the right
of the LSB was one prior to rounding, the inexact exception is signaled.

3.4. TSC692E Signal Descriptions

The following sections describe the external signals of the TSC692E. Active low signals are marked with an overbar,
active high signals are not.

3.4.1. Integer Unit Interface Signals

FP active-low output (Floating—point Present):

Thissignal indicates to the TSC691E that a FPU is present in the system. In the absence of a FPU, thissignal is pulled
upto VCC by aresistor. Thisisastatic signal; it always asserts alow output. The TSC691E generates a floating—point
disabletrap if FPisnot asserted during the execution of afloating—point instruction. FP is three-state output controlled
by TOE signal.

FCC[1:0] output (Floating—point Condition Codes):

The FCC[1:Q] bits indicate the current condition code of the FPU, and are valid only if FCCV is asserted. FBfcc
instructions use the val ue of these bits during the execute cycleif they are valid. If the FCC[1:0] bits are not valid, then
FCCV s released, which HALTSs the TSC691E until the FCC bits become valid. FCC[1:Q] is three-state output
controlled by TOE signal.

Table 10. FCC[1:0] Condition Codes

FCC1 FCCO Condition
0 0 equal
0 1 Opl < Op2
1 0 Opl>Op2
1 1 Unordered

FCCV output (Floating—point Condition Codes Valid):

The TSC692E asserts the FCCV signal when the FCC[1:0] represent avalid condition. The FCCV signal is deasserted
when a pending floating—point compare instruction exists in the floating—point queue. FCCV is reasserted when the
compareinstruction is completed and FCC bits are valid. FCCV isthree-state output controlled by TOE signal.

FHOLD output (Floating—point HOL D):

The FHOLD signal is asserted by the TSC692E if it cannot continue execution due to a resource or operand
dependency. The TSC692E checks for all dependencies in the decode stage, and if necessary, asserts FHOLD in the
next cycle.

The FHOLD signal is used by the TSC691E to freeze its pipeline in the same cycle. The TSC692E must eventually
de-assert FHOLD to release the TSC691E pipeline. FHOLD is three-state output controlled by TOE signal.

FEXC output (Floating—point EXCeption):

The FEXC is asserted if afloating—point exception has occurred. It remains asserted until the TSC691E acknowledges
that it has taken atrap by asserting FXACK.

Floating—point exceptions are taken only during the execution of a floating—point instruction. The TSC692E rel eases
FEXC when it receives FXACK. FEXC isthree-state output controlled by TOE signal.

FEXC is also asserted when an error occurs (in that case HWERROR will be also asserted).
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FIPAR output (Floating—point Unit to I nteger Unit Control Parity):

This signal contains the odd parity over the FCC[1:0], FCCV, FEXC and FHOLD bhits. The parity hit is generated by
the FPU and will be checked by the IU. FIPAR is three-state output controlled by TOE signal.

FXACK input (Floating—point eXception ACK nowledge):
The FXACK signal is asserted by the TSC691E to acknowledge to the TSC692E that the current FP trap is taken.

INST input (INSTruction fetch):

The INST signal is asserted by the TSC691E whenever anew instruction is being fetched. It is used by the TSC692E
to latch the instruction on the D[31:0] bus into the FPU instruction buffer.

The TSC692E has two instruction buffers (D1 and D2) to save the last two fetched instructions (see Figure 3. ). When
INST isasserted, the new instruction enters the D1 buffer and the old instruction is pushed into the D2 buffer.

FINSL input (Floating—point INStruction in buffer 1):

The FINSL signal is asserted by the TSC691E during the decode stage of a FPU instruction if the instruction is stored
inthe D1 buffer of the TSCE692E. The TSC692E usesthissignal to launch theinstruction inthe D1 buffer into its execute
stage instruction register.

FINS2 input (Floating—point INStruction in buffer 2):

The FINS2 signal is asserted by the TSC691E during the decode stage of a FPU instruction if the instruction is stored
inthe D2 buffer of the TSCE692E. The TSC692E usesthissignal to launch theinstruction inthe D2 buffer into its execute
stage instruction register.

FLUSH input (Floating—point instruction fLUSH):

The FLUSH signd is asserted by the TSC691E to signal to the TSC692E to flush the instructions in its instruction
registers. This may happen when atrap is taken by the TSC691E. The TSC691E will restart the flushed instructions
after returning from the trap.

FLUSH has no effect on instructionsin the floating—point queue. In addition to freezing the FPU pipeline, the TSC692E
uses FLUSH to shut off the D busdrivers during store operations. To ensure correct operation of the TSC692E, FLUSH
must not change state more than once during a clock cycle.

IFPAR input (Integer Unit to Floating—point Unit Control Parity):

Thissignal containsthe odd parity over the FINS1, FINS2, FLUSH, FXACK and INST bits. The parity bit is generated
by the U and will be checked by the FPU.

3.4.2. Coprocessor Interface Signals

CHOLD input (Coprocessor HOLD):

The CHOLD signal is asserted by the coprocessor if it cannot continue execution. The coprocessor must check all
dependencies in the decode stage of the instruction and assert the CHOLD signal, if necessary, in the next cycle. The
coprocessor must eventually de—assert this signal to unfreeze the TSC691E and TSC692E pipelines. The CHOLD
signal islatched with atransparent latch in the TSC692E beforeiit is used.

CCCV input (Coprocessor Condition Codes Valid):

The coprocessor asserts the CCCV signal when the CCC[1:0] represent a valid condition. The CCCV signal is
deasserted when a pending coprocessor compare instruction existsin the coprocessor queue. CCCV isreasserted when
the compare instruction is completed and the CCC[1:0] bits are valid. The TSC692E will enter a wait state if CCCV
is deasserted. The CCCV signal is latched with atransparent latch in the TSC692E before it is used.

3.4.3. System/Memory Interface Signals

A[31:0] input (Address bus[31:0]):

The address bus for the TSC692E is an input—only bus. The TSC691E supplies all addresses for instruction and data
fetches for the TSCE92E. The TSC692E captures addresses of floating—point instructions from the A[31:0] bus into
the DDA register. When INST is asserted by the TSC691E, the contents of the DDA istransferred to the DAL register.
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APAR input (Address Bus Parity):
This signal is used by the FPU to check the odd parity over the 32-bit address.

D[31:0] input/output (Data bus [31:0]):

The D[31:0] bus is driven by the FPU only during the execution of floating—point store instructions. The store data
issent out unlatched and must be latched externally beforeit isused. Once latched, store dataisvalid during the second
data cycle of a store single access and on the second and third data cycle of a store double access. The data alignment
for load and store instructions is done inside the FPU. A double word is aligned on an eight—byte boundary. A single
word is aligned on afour—byte boundary. When output, D[31:0] is three-state controlled by DOE signal.

DPAR bidirectional (Data Bus Parity):

This signal contains the odd parity over the 32-bit bidirectional data bus. In case of store data operations the parity
bit is generated and launched in parallel by the FPU. In case of |oad data operations the parity is checked by the FPU.
When output, DPAR is three-state controlled by DOE signal

DOE input (Data Output Enable):

The DOE signal is connected directly to the data output drivers and DPAR driver and must be asserted during normal
operation. Deassertion of thissignal three—states all output drivers on the data bus and DPAR signal. Thissignal should
be deasserted only when the bus is granted to another bus master, i.e, when either BHOLD, CHOLD, MHOLDA, or
MHOLDB is asserted.

TOE input (Test Output Enable):

The TOE signal allowsto disable all output control signals (except TAPsignals): FNULL, FR, FCC[1:0], FCCV, FEXC,
FHOLD, FIPAR, HWERROR and MCERR.

MHOLDA, MHOL DB input (Memory HOL D):

Asserting MHOLDA or MHOLDB freezes the TSC692E pipeline. Either MHOLDA or MHOLDB is used to freeze
the FPU (and the |U) pipelines during a cache miss (for systems with cache) or when slow memory is accessed.

BHOLD input (BusHOLD):

Thissignal is asserted by the system’s I/O controller when an external bus master requests the data bus. Assertion of
this signal will freeze the FPU pipeline. External logic should guarantee that after de—assertion of BHOLD, the state
of al inputs to the chip is the same as before BHOLD was asserted.

MDS input (Memory Data Strobe):

The MDS signal is used to load datainto the FPU when theinternal FPU pipelineis frozen by assertion of MHOLDA,
MHOLDB.

FNULL output (FPu NULLify cycle):

This signal signals to the memory system when the TSC692E is holding the instruction pipeline of the system. This
hold would occur when FHOLD is asserted or FCCV is deasserted. This signal is used by the memory system in the
same fashion as the integer unit’'s INULL signal. The system needs this signal because the IU’s INULL does not take
into account holds requested by the FPU. FNULL is three-state output controlled by TOE signal.

RESET input (RESET):

Asserting the RESET signal resets the pipeline and sets all registers (except f registers) and the writable fields of the
FSR to zero. The RESET signal must remain asserted for aminimum of nine cycles. It is protected by aglitch removal
filter and pulses which are so short that they are detected only during one clock period are not influencing the FPU.
RESET signal isalso protected with two-rail coding and an error detected will lead to atrap and indicate Internal Parity
Error.

HWERROR output (ERROR State):

Thissignal is asserted whenever an error occursin the FPU. The FPU will enter the exception pending mode and will
assert FEXC. HWERROR is deasserted when FTT field in FSR is changed.

28 Rev. H —02 Dec. 96



AMEL TSCE92E

CMODE input (M aster/checker operation):

Assertion of thissignal setsthe FPU to act as a checker only in amaster/checker configuration. All output signal except
HWERROR, MCERR and TAP signals will be high «Z». CMODE is a static signal and will not change when
running.The CMODE signal may only be changed when the RESET and/or the HALT signal is asserted.

M CERR output (Comparison Error):

This signal is asserted in checker mode when a comparison error occurs on the internal signals vis-a-vis the output
signalsof themaster FPU. In singlemode, thissignal isasserted when a stuck-at fault i s detected between pin and output
buffer. It is deasserted when the error disappears.

602M ODE input (Nor mal 602M ODE Oper ation):

Forcing this input low disables the parity checking of al input signals. This means the TSC692E will operate with
standard input signals.Nevertherless, internal parity check remains active and parity on the data and address bus is
generated internally. 602MODE is a static signal and will not change when running. The 602M ODE signal may only
be changed when the RESET and/or the HALT signal is asserted.

HALT input (HALT Mode):

When asserted this input will freeze the FPU pipeline and the clock. All information placed in the registers of the FPU
remains unchanged. By deasserting HALT, execution of the FPU will resume.

Datavalid on output buffers before HALT was asserted are restored after deassertion of HALT.
When the FPU isin HALT mode, the TAP is still operating.

3.4.4. TAP signals

TCLK input (JTAG Test Clock)
JTAG test clock input.

TMSinput (JTAG Test Mode Select)

The TMS signdl is interpreted by the TAP controller to control test operations. Received signals are sampled at the
rising edge of the TCLK signal.

TDI input (JTAG Test Data | nput)

Serial input data applied to this port is fed either into the instruction register or into a test data register, depending on
the sequence previoudly applied to the TMS signal. Received input data is sampled at the rising edge of the TCLK
signal.

TRST input (JTAG Test RESET)

The TAP'stest logic isRESET when alogical 0 is applied to this port.

TDO output (JTAG Test Data Output)

Depending on the sequence previously applied to the TMS input, the content of either the instruction register or the
data register are serially shifted out toward the TDO output. Data out of TDO are clocked at the falling edge of the
TCLK signal. TDO should bein the inactive state except when scanning isin progress (use of three-state driver).

3.4.5. Power and Clock Signals
CLK input (CLocK):

The CLK signal isused for clocking the FPU’s pipeline registers. It is high during the first half of the processor cycle
and low during the second half. Therising edge of CLK defines the beginning of each pipeline stage in the FPU.

VCCO, VCCI, VCCT input (Power):

These pins provide +5V power to various sections of the processor. Power is supplied on three different busses to
provide clean, stable power to each section: output drivers, main internal circuitry, and the input circuits.

Rev. H —02 Dec. 96 29



TSCE92E AMEL

VCCO pins supply the output driver;
V CCI pins supply main internal circuitry;
VCCT pins supply the input circuit.

VSSO, VSSI, VSST input (Ground):

These pins provide ground return for the power signals. Ground is supplied on three different bussesto match the power
signals to each section:

V SSO pins for the output driver;
VSSI pinsfor the main internal circuitry;
VSST pinsfor the input circuit bus.

4. Fault Tolerant and Test MECHANISM.

FAULT TOLERANT MECHANISM:

Parity checking on 100% of the total number of latches with hardware error traps

Parity checking of address, data pads and control pads

Master/Checker operation

Parity on odd and even bits of the register file for a better detection of SEU

Fabricated using Atmel Wireless & Microcontrollers Space hardened 0.8 pm SCM OS technology
TEST MECHANISM:

e |EEE Standard Test Access Port & Boundary-Scan Architecture

® |nternal Scan Path to test theinternal parity error detection during off-line test

® Possibility to HALT the FPU by an external signal

4.1. Fault Tolerant and Test Support Signals

Some signals have been added for fault tolerant and test MECHANISM improvement. Those new signals can be
classified asfollow:

4.1.1. Parity Checking

Address Parity Checking:
APAR - Address Bus Parity (input)
Data Parity Checking:
DPAR - Data Bus Parity (bidirectional)
FPU control signal Parity Checking:
IFPAR - IU to FPU Control Parity (input)
FIPAR - FPU to IU Control Parity (output)
Parity Checking Error Output
HWERROR - Error State (output)
Note that all parity bits are defined as odd parity over the concerned busses. The odd parity definition is:
the number of onesin aword, including the parity bit, is always odd (eg 00000000 --> P = 1, 00000001 --> P = 0)
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4.1.2. Master/Checker Mode

CMODE - Checker Mode (input)
MCERR - Comparison Error (output)

4.1.3. Test Access Port

TCLK - Test Clock (input)
TRST - Test RESET (input)
TMS - Test Mode Select (input)
TDI - Test Data Input (input)
TDO - Test Data Output (Output)

4.1.4. Miscellaneous

602M ODE - Normal 602M ODE Operation (input)
HALT - HALT (input)

4.2.Parity Checking

4.2.1. Introduction

Inthe TSC692E, 98% of the FPU registersare parity bit protected. Address and data busses, control signalsto and from
IU are also parity protected. Checking of registers and bussesis performed only if the register or the busis used by the
current instruction. With this approach, unused registers/busses will not cause an error and downtime of the system
will be limited.

The parity checking is disabled during and after RESET until the latches used are set. During Initialization sequence,
al internal registers (7 registers, FSR) must be written in order to initialize the clock bits. All internal registers (except
f registers) and all writable fields of FSR are set to zero when asserting RESET.

4.2.2. Error handling schemein TSC692E

Since the FPU only performs calculations, the solution for handling al errors detected by the internal concurrent error
detection in the FPU is to handle them as exceptions and enter the cause in the FTT field in the FSR. The FTT field
isthree bit and is coded to get eight trap types. The solution is to define the trap types used for internal error to be trap
types number 5to 7.

The FPU can signal parity errors externally by using signal HWERROR. The FPU will enter the exception pending
mode and FEXC will be asserted in the same cycle as HWERROR. The address and the failing FP operate instruction
are stored in the queue. Analysis of error typeis possible by software assistance by reading FSR. Three error types are
defined:

DataBusError (FTT field of FSR equal to 5)
Thistype of error concerns parity errors on the data bus.
Restartable Error (FTT field of FSR equal to 6)

This type of error concerns parity errors in the FPU that were detected before changing the FPU state and could be
removed by restarting the instruction (IU to FPU control bus, ...).

Non-RestartableError (FTT field of FSR equal to 7)

This type of error concerns parity errors that were detected after the state of the FPU was changed and could not be
removed by restarting the instruction (FSR, Register File,...).

HWERROR will be asserted low in case of any of above errors, and stay asserted until the next FPop encountered in
the instruction stream (after a STDFQ instruction) modifiesthe FTT field of FSR.

When multiple hardware traps occur at the same cycle, the highest priority trap is taken, and lower priority traps are
ignored. The priority applied on the hardware traps of the FPU are defined as follow:
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Table 11. priority within traps

FSR.tt Type of trap priority
1,234 |EEE,unfinished,Unimp,Seq.Err traps 4

5 Data Bus Error trap 2

6 Restartable Error trap 3

7 Non restartable trap 1

Note: Priority 1isfor highest priority.

4.2.3. Parity Checking on Control Padsfor the FPU
The control signals between the U and the FPU are protected by a parity bit.

4.2.3.1. Input control signals

Thereisafive bit input control bus: FINS1, FINS2, FLUSH, FXACK and INST.
The parity input pad for these five signalsis IFPAR (1U to FPU PARity).

This parity bit is generated by the [U.

4.2.3.1.1. Output control signals

Thereisafive bit output control bus: FCC<1:0>, FCCV, FEXC and FHOLD.
The parity output pad for these signalsis FIPAR (FPU to IU PARIty).

This parity bit is generated by the FPU and checked by the 1U.

FIPAR isthree-state output controlled by TOE signal.

4.2.4. Parity Checking on address bus

The 32 bit address bus contains aparity bit cal culated by the |U and sent out on the APAR pad. The parity bit is checked
by the FPU for all FPop instructionsand it will generate aNon Restartabletrap only in the case of a STDFQ instruction.

4.2.5. Parity Checking on data bus

The DPAR bidirectional signal contains the odd parity over the 32-bit data bus.

When the FPU receives adata (LOAD) or an instruction, the parity bit is checked by the FPU.

In case of a STORE datainstruction, the parity bit is generated and launched in parallel by the FPU.
DPAR is three-state output controlled by DOE signal.

4.2.6. Internal Parity Checking

All internal registers are parity protected. The FPU includes parity generation and checking on al internal datapaths
(see Figure 20. , page 45)(see Figure 21. , page 46).

4.2.7.Non RT 602 Mode
To be able to use normal 1U (i.e. TSCB691E), parity on the data bus has to be generated internally and parity checking
on the control bus must be turned off. Nevertheless, internal parity check remains active.

Thisfeatureiscontrolled by asserting the 602M ODE input signal. 602M ODE isastatic signal and will not change when
running.
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Figure 19. Parity Checking on Fractional Datapath
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Figure 20. Parity Checking on Exponent Datapath

4.3. Master/checker Operation

The TSC692E includes comparator circuits at the outputs to support fault detection. Applicationsrequiring ahigh level
of reliability can use this Master/Checker operation to introduce fault behavior on system level. By duplication of units
and without the use of external comparators 100% of the internal errors are detected, especially those errors that are
not detected by the internal concurrent error detection MECHANISM.
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4.3.1. Basic function

By programming of the CMODE signal, the TSC692E can be configured either as master or checker. The master and
at least one checker circuit are working in parallel and execute the same program. While the master is forcing the data
bus, the checker isin a read and compare mode. This means the output buffers are disabled and the external busses
are compared by the checker with its internal results. If a mismatch occurs on any output, then the MCERR signal is
asserted. In this case, the system hardware and/or software can take appropriate action.

If the master FPU signals an internal error before a comparison error is indicated, it is possible to stop execution of
the two FPUs by asserting the HALT signal, disable the master FPU, change the slave FPU to master FPU and continue
execution. CMODE signal can be changed when RESET signal is asserted or when the FPU isin HALT mode.

An external/internal mismatch can occur for two reasons.

First, a short or other electrical failure can force the output signal to afixed voltage. For example, abus signal can be
shorted to ground. When the circuit drives a high voltage on the bus, the external signal will be pulled low and a
mismatch will occur.

The second way is that an external/internal mismatch can occur in the master/checker mode. Figure 22 shows a basic
master/checker configuration using two TSC692E devices.

Using the master/checker solution there is a possibility that the system can continue with the correct remaining unit
or with both after restoration of state of the faulty unit. If aninternal error isindicated in the checker, it could beignored.
The TSC693E requires error signals from both the master and the checker. In case of corruption the system behavior
is defined by the TSCE93E.

The FPU shall also use the Master/Checker function in single mode for detection of stuck-at-one and stuck-at-zero
faults on the checked buffers (asserting then MCERR for Master FPU).

On a master processor, the three-state control signals (DOE and TOE) disable the checker mode of the three-stated
buffers.

Control
Address
Data i
YV Y Y
HALT —> ——— HALT
MASTER FPU CHECKER FPU
CMOD=1 3| '@« CMOD=0
MCERR <«— L » MCERR

Figure21. Master/Checker configuration

4.3.2. Master/Checker signals

CMODE input (Master/checker operation):

Assertion of thissignal setsthe FPU to act as a checker only in a master/checker configuration. All output signal except
HWERROR, MCERR and TAP signals will be high «Z». CMODE is a static signal and will not change when
running.The CMODE signal may only be changed when the RESET and/or the HALT signal is asserted.

MCERR output Comparison Error:

This signal is asserted in checker mode when a comparison error occurs on the internal output signals (except
HWERROR and TAP signals) vis-a-visthe output signal s of the master FPU. It is deasserted when the error disappears.
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4.4. |EEE Standard Test Access Port & Boundary-Scan Architecture

The FPU includes a Test Access Port (TAP) interface (IEEE standard 1149.1). This interface is used for debugging
and test purposes.
Thisinterface provides standardized approaches to:

testing the interconnections between integrated circuits once they have been assembled onto a printed circuit board
or other substrate.

support of testing the integrated circuit itself.
observing or modifying activity during the component’s normal operation.

4.4.1. TAP signals

The Test Access Port includes the following five connections: TCLK, TMS, TRST, TDI and TDO. Dedicated TAP
connections are required to allow access to the full range of mandatory features of this standard.

TCLK (input)

The Test Clock Input provides the clock for the test logic defined by this standard. The IEEE standards requires that
TCLK can be stopped at 0 indefinitely without causing any change to the state of the test logic.

TMS (input)

The signal received by TMS is decoded by the TAP controller to control test operation. TMS is sampled on the rising
edge of TCLK and has to change on the falling edge of TCLK

TDI (input)

Serial test instructions and data are received by the test logic by TDI. TDI is sampled on the rising edge of TCLK and
has to change on the falling edge of TCLK.

TRST (input)

The TRST input provides for asynchronous initialization of the TAP controller.

TDO (output)

TDO isthe serial output for test instructions and data from the test logic defined in the standard.

4.4.2. TAP Controller

The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCLK signal of the
TAP and controls the sequence of operations of the circuit defined by the IEEE standard.

4.4.3. The Instruction Register

The Instruction Register allows an instruction to be shifted into the design. The instruction is used to select the test
to be performed or the test data register to be accessed or both. A number of mandatory and optional instructions are
defined by the standard. The instructions SAMPLE/PRELOAD, BYPASS, INTEST and EXTEST are implemented
on this chip.

The private instruction TESTPAR will be implemented to access the internal scan path registers. These registers are
not publicly accessible and will be used to test the internal parity logic.

IR encoding is shown in Table 12.

36 Rev. H —02 Dec. 96



AMEL TSCE92E

Table 12. Instruction Register Encoding

IR value Instruction Registers
000001 SAMPLE/PRELOAD Boundary Scan Registers
111111 BYPASS Bypass Register
000011 INTEST Boundary Scan Registers
000000 EXTEST Boundary Scan Registers
100000 IDCODE Identification Register

proprietary TESTPAR Internal Scan Registers

4.4.3.1. Design and Construction of theinstruction register

The instruction register is a shift-based design having an optional parallel input. These parallel inputs permit capture
of design-specific information in the Capture-IR state. Figure 23 illustrates an example implementation of an
Instruction Register Cell.

Shift IR ————»|G1 1D 5 Ibr_ltstruction
i
Dala —| 1 1D 3 >C1
From last cell 1
—»R
|—>-> c1
Clock IR » Tonext cell
Update IR
Reset

Figure 22. Instruction Register Cell

4.4.3.2. BYPASS Instruction

The BYPASS register contains a single shift register stage, used to speed-up shifting at the board level, through
components which are not activated.

4,.4.3.3. EXTEST Instruction

EXTEST instruction shall connect the BOUNDARY SCAN register between TDI and TDO. It is used to test
connections between components on the board level. All output signals can be disabled by using the EXTEST
instruction (except TAP).

4.4.3.4. INTEST Instruction

INTEST instruction allows testing of the on-chip system logic while the component is assembled on the board, with
each test pattern and response being shifted through the boundary-scan register.

4.4.3.5. SAMPLE/PRELOAD Instruction

SAMPLE instruction alows normal operation of the system logic with the ability to sample signals entering and
leaving the component without affecting circuit operation.

PRELOAD allows a value to be preloaded on the latched outputs of the boundary scan register. This instruction does
not modify the system behavior.
4.4.4. The Device | dentification Register

The Device ldentification Register is implemented on this chip. It contains the TSC692E's assigned component
identifier, 0xOB6410B1. It is selected by the IDCODE instruction.
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4.45. Internal Scan Path

An Internal Scan Path is implemented to provide the off-line test of the internal parity error detection. This Internal
Scan Path is controlled by the TAP and forces some nodes in the generation circuit of the parity bits. This will then
result in a value with the wrong parity. When this value is read again, an error will be detected if the error detection
works correctly. This chain will have one bit for each parity generator.

4.5. Boundary scan test register

The Boundary-scan technique involves the inclusion of a shift register stage (contained in a Boundary-scan cell)
adjacent to each component pin so that signals at component boundaries can be controlled and observed using scan
testing principles.

Figure 24. illustrates an example implementation for a Boundary-scan cell that could be used for an input or output
connection to an integrated circuit. Dependent on the control signals applied to the multiplexers, data can either be
loaded into the scan register from the Signal-in port (e.g., the input pin), or driven from the register through the
Signal-out port of the cell (e.g., into the core of the component design). The second flip-flop (controlled by clock B)
is provided to ensure that the signals driven out of the cell in the latter case are held while new data is shifted into the
cell using clock A.

A

Scan out
Mode )'EGl J
Signd in » 1 Signal
1 > out
Shift/Load |Gl |
3] 1
— 1 1D 1D
> c1 > c1
) Clock B
Scanin Clock A

Figure 23. Boundary Scan Cell

4.6. Parity on odd and even bits of theregister file bits

It is known that the impact from an SEU may flip adjacent bits in a register file. Those multiple bit errors might be
impossibleto detect with one parity bit error. Though these cases with multiple bit errors due to SEU are probably more
rare than one bit errors, they cannot be neglected, especially not in the register file, which corresponds to about 50%
of the entire amount of registersin the FPU.

One solution to this problem is to generate two parity bits for a 32-bits word, one for even bits and one for odd bits.
Thisisdonein theregister file and will remove all multiple bit errors due to SEU.
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5. Electrical and Mechanical Specifications.

5.1. TSC692E M aximum Ratings and DC Char acteristics

5.1.1. TSC692E M aximum Rating

Storage TEMPEIEIUIE . . .. .ottt e e et e e e e e -65°Cto+150° C
Ambient Temperature with Power Applied . ....... ... i e -55° Cto+125°C
Supply Voltageltl ... -05 Vto+7.0V
INPUEVOITBOE . . . oo e e e e e -05 Vto+7.0V
5.1.2. TSC692E Operating Range
Table 13. TSC692E Operating Range
Range Ambient Temperaturel@ Vee
Military -55° Cto +125° C 5V +/- 10%
[a]. Ambient temperature is defined as the ‘instant on’ case temperature.
5.1.3. TSC692E DC Characteristics Over the Operating Range
Table 14. TSC692E DC Char acteristics over the operating range
Parameters Description Test Conditions Min. M ax. Units
VoH Output HIGH Voltage Vce=Min, loy =-2.0 mA 24 V
VoL Output LOW Voltage Vce=Min, loL =4.0 mA 05 \%
Viy Input HIGH Voltage 21 Vce \Y
ViL Input LOW Voltage -0.5 0.8 \Y
liz Input Leakage Current Vec=Max., Vss< VNS Vee -10 10 HA
loz Output Leakage Current Vee=Max., Vss<« Vour < Vee -15 15 MA
Isc Output Short Circuit Current Ve = Max., Vout = 0V -30 -350 mA
lccop TSC692E Supply Current Vce =Max, f =14 MHz 180 mA
lccss Standby Current Vcc = Max, f=0 MHz 3 mA
Table 15. TSC692E Capacitance Ratings!!]
Parameters Description Max. (pF)
CiNn Input Capacitance 10
CouT Output Capacitance 12
Cio Input/Output Bus Capacitance 15
[1]. Tested initially and after any design or process changes that may affect these parameters.
Test conditionsare: Vcc =5.0V, Ta =25, C.f =1 MHz
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5.1.4. TSC692E AC Test Loads and Wavefor ms

R1 470 Ohm
5 O 3V
OUTPUT O ¢ oV
—__ cC= R2 319 Ohm
50pF
- Test Load

90%

10%

<3ns

Waveform

Figure 24. TSC692E AC Test L oads and Waveforms

5.2. TSCB692E AC Characteristics

Table 16. TSC692E Char acteristicsat 14/25 MHz

spec. 14 MHz

Parameter Description Ref. Edge Min Max
1 tey Clock Cycleld 71
2 teHL Clock High and Low 33
3 tas A[31:0] Setup CLK+ 7
4 taH A[31:0] Hold CLK+ 6
5 tpis D[31:0] Input Setup CLK+ 7
6 tDIH D[31:0] Input Hold CLK+ 6

7 tbop D[31:0] Output Delay CLK- 35
8 tboH D[31:0] Data Valid CLK- 4

9 tDOFFL D[31:0] Output Turn—off FLUSH+ 56
10 tDOHFL D[31:0] Output Valid FLUSH+ 0

11 tDOFOE D[31:0] Output Turn—offlbl DOE+ 27

12 tDoONOE D[31:0] Output Turn-on DOE- 27
13 tDOHOE D[31:0] Output Valid DOE- 0
14 tas FINSL/2 Setup CLK+ 40
15 ten FINSL/2 Hold CLK+ 25
16 tins INST Setup CLK+ 29
17 tiNH INST Hold CLK+ 2
18 texs FXACK Setup CLK+ 29
19 tExH FXACK Hold CLK+ 2
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spec. 14 MHz
Parameter Description Ref. Edge Min  Max

20 trLs FLUSH Setup CLK+ 38

21 tFLH FLUSH Hold CLK+ 2

22 tres RESET Setup CLK+ 27

23 tREH RESET Hold CLK+ 3

24 tatmel MHOLDA Setup [ CLK- 4

25 tMHH MHOLDA Hold CLK- 9

26 tmps MDS Setup CLK- 4

27 tMDH MDS Hold CLK- 9

28 tFHD FHOLD Delay CLK- 40
29 tPHH FHOLD Valid CLK- 5

30 trHDF FHOLD Delay FINSL/2+ 29
31 tFHDFL FHOLD Delay FLUSH+ 50
32 tFHDMH FHOLD Delay MHOLD- 65
33 trccvD FCCV Delay CLK- 40
34 trcovh FceV valid CLK- 5

35 trcCVDEL FCCV Delay FLUSH+ 50
36 tFcCVDMH FCCV Delay MHOLD- 65
37 teced FCC[1:0] Delay CLK+ 47
38 trech FCC[1:0] Valid CLK+ 5

39 treD FEXC Delay CLK+ 47
40 tren FEXC vdid CLK+ 5

41 teND FNULL Delay CLK+ 36
42 tENH FNULL Valid CLK+ 3

43 trey TCLK Clock Cycle 100 1000
44 ttms TMS Setup TCLK+ 20

45 trmu TMSHold TCLK+ 25

46 tois TDI Setup TCLK+ 20

47 tTDIH TDI Hold TCLK+ 25

48 tTrs TRST Setup TCLK+ 20

49 tTRH TRST Hold TCLK+ 25

50 troob TDO Delay TCLK- 45
51 tTDOH TDO Valid TCLK- 5

52 taps APAR Setup CLK+ 6
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spec. 14 MHz
Parameter Description Ref. Edge Min  Max

53 taAPH APAR Hold CLK+ 6
54 tbpis DPAR Input Setup CLK+ 6
55 toPIH DPAR Input Hold CLK+ 4
56 toPoD DPAR Output Delay CLK- 45
57 topoH DPAR Output Valid CLK- 4
58 tiFs IFPAR Setup CLK+ 16
59 =N IFPAR Hold CLK+ 3
60 trPD FIPAR Delayldl CLK+ 50
61 trpH FIPAR Valid CLK+ 5
62 tmep MCERR Delay CLK+ 45
63 tMcH MCERR Valid CLK+ 5
64 teoostcms B602MODE/CMODE Setupl€l CLK+ 18
65 tHAS HALT Setup CLK- 13
66 tHAH HALT Hold CLK- 4
67 terD HWERROR Delay CLK+ 45
68 tERH HWERROR Valid CLK+ 5

[a]. Parameter tes (Clock rise and fall) is set to 0.8 V/ns (min).
[]. Idem for TOE and output signals: FCCV, FCC[1:0], FEXC, FHOLD, FNULL, FIPAR and FP (param. 11, 12 and 13)

[c]. This specification applies also to MHOLDB, BHOLD, CHOLD and CCCV signals

[d]. FIPAR evaluated with FHOLD and FCCV sampled on CLK- and latched on CLK+.Needs same logic in IU to calculate correct PARITY
(param. 60 and 61)

[€]. 602M ODE/CMODE shall be changed to be related to positive clock edge during RESET active or HALT active

42
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5.2.1. TSC692E AC Waveforms
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Figure 26. Clock and RESET Timing
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Figure 28. Floating—Point Store Operation
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5.3. TSC692E Package Descriptions

5.3.1. 160-Pin MQFP-L Package

D | A\ ]
J
D1 —
N 1 \
\ ‘ 3
RERQHE ! 10000 E.
| IL
:EQTF i ; qﬁ:::
= = 1 |
|
1 | ,
il
E = ———— = — ==
| e |
_f I
=, = |
= NE=
N #@ i| D% o
L i1} PIN N°*1 INDEX —T
- c.|
MM INCH
Min Max Min Max
A 2.44 3.60 .096 . 142
C 0.15 TYP .006 TYP
D 31.93 32.67 1.257 1.286
D1 26.93 27 .47 1.060 1.082
E 31.93 32.67 1.257 1.286
E1 26.93 27 .47 1.060 1.082
e 0.65 BSC .0256 BSC
f 0.30 REF .012 REF
J 0.50 1.00 .020 .040
L 1.21 1.41 .047 .056
N1 40 40
N2 40 40

L

50

Rev. H —02 Dec. 96



AMEL TSCE92E

5.3.2. 160-Pin MQFP-L Pin Assignment

Pin Signal Pin Signal Pin Signal Pin Signal
1 A3l 41 CLK 81 TDO 121 VSS|
2 A30 42 VSS| 82 TDI 122 VCCI
3 A29 43 VCCI 83 VCCI 123 VSSO
4 A28 44 VSSO 84 T™MS 124 D15
5 A27 45 VCCO 85 TRST 125 VCCO
6 VCCI 46 VCCT 86 VSS| 126 D14
7 A26 47 INST 87 TCLK 127 D13
8 A25 48 FEXC 88 FINS2 128 VCCT
9 A24 49 FP 89 FINSL 129 VCCI
10 A23 50 VSS| 90 VSS| 130 D12
11 A22 51 TOE 91 VSSO 131 D11
12 VSS| 52 MDS 92 D31 132 VSSO
13 A21 53 MHOLDA 93 VCCI 133 VSS
14 A20 54 VCCI 94 D30 134 VCCO
15 A19 55 MHOLDB 95 VCCO 135 D10
16 A18 56 BHOLD 96 D29 136 D9
17 Al7 57 VSSI 97 D28 137 VSSO
18 Al6 58 VSSO 98 VSSO 138 D8
19 VSSI 59 FNULL 99 VSSI 139 VCCI
20 A15 60 FHOLD 100 D27 140 D7
21 Al4 61 VCCO 101 D26 141 VCCO
22 Al3 62 CHOLD 102 D25 142 D6
23 Al12 63 RESET 103 VCCO 143 D5
24 VCCI 64 VSSI 104 D24 144 VSSO
25 All 65 VCCI 105 VCCI 145 D4
26 A10 66 FCCV 106 VSSO 146 VSS
27 A9 67 FIPAR 107 D23 147 D3
28 A8 68 CcCccv 108 D22 148 D2
29 VSS| 69 VSSO 109 VSSl 149 D1
30 A7 70 VSST 110 VSST 150 VCCI
31 A6 71 FCCO 111 D21 151 VSST
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Pin Signal Pin Signal Pin Signal Pin Signal
32 VSST 72 FCC1 112 D20 152 VCCO
33 A5 73 VCCI 113 VCCO 153 DO
34 A4 74 FXACK 114 VSSO 154 DPAR
35 A3 75 HWERROR 115 D19 155 MCERR
36 A2 76 VSS| 116 VSS 156 CMODE
37 VCCI 7 FLUSH 117 D18 157 VSSO
38 Al 78 VCCO 118 D17 158 VSS
39 AO 79 IFPAR 119 D16 159 HALT
40 APAR 80 VSSO 120 DOE 160 602MODE
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