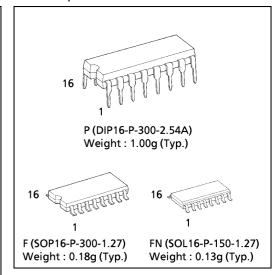
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

TC74AC166P, TC74AC166F, TC74AC166FN

8 - BIT SHIFT REGISTER (P - IN, S - OUT)

The TC74AC166 is an advanced high speed CMOS 8-BIT PARALLEL/SERIAL-IN, SERIAL-OUT SHIFT REGISTER fabricated with silicon gate and double-layer metal wiring C^2MOS technology.

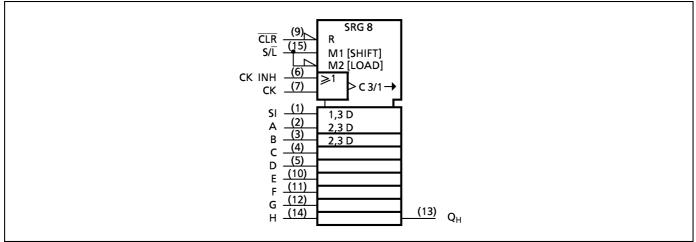
It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.


It consists of parallel-in or serial-in, serial-out 8 - bit shift register with a gated clock input and an overriding clear input. The parallel-in or serial-in modes are controlled by the SHIFT/LOAD input. When the SHIFT/LOAD input is held high, the serial data input is enabled and the eight flip-flops perform serial shifting on each clock pulse. When held low, the parallel data inputs are enabled and synchronous loading occurs on the next clock pulse. Clocking is accomplished on the low-to-high transition of the clock pulse. The CLOCK-INHIBIT input should be shifted high only while the CLOCK input is held high. A direct clear input overrides all other inputs, including the clock, and sets all the flip-flops to zero. Functional details are shown in the truth table and the timing charts.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.


FEATURES:

- High Noise Immunity V_{NIH} = V_{NIL} = 28% V_{CC} (Min.)
 Symmetrical Output Impedance | I_{OH} | = I_{OL} = 24mA(Min.)
- Symmetrical Output Impedance... $|I_{OH}| = I_{OL} = 24\text{mA}(\text{Min.})$ Capability of driving 50Ω transmission lines.
- Balanced Propagation Delays $\cdots t_{pLH} \approx t_{pHL}$
- Wide Operating Voltage Range ···· V_{CC} (opr) = 2V ~ 5.5V
- Pin and Function Compatible with 74HC166

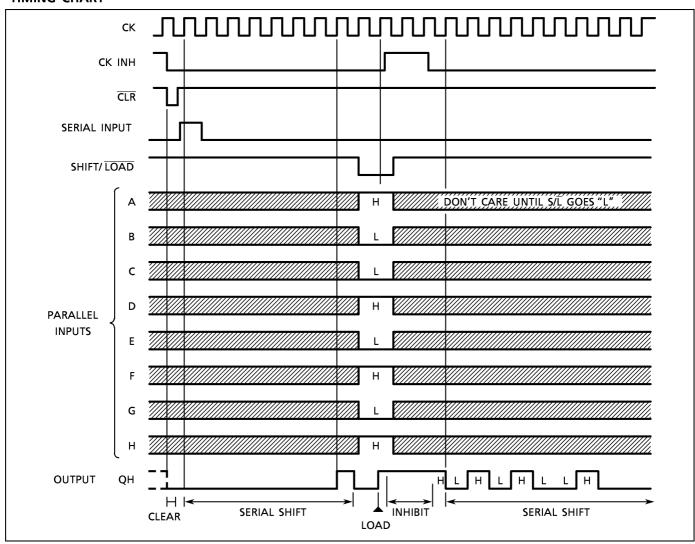

(Note) The JEDEC SOP (FN) is not available in Japan.

PIN ASSIGNMENT

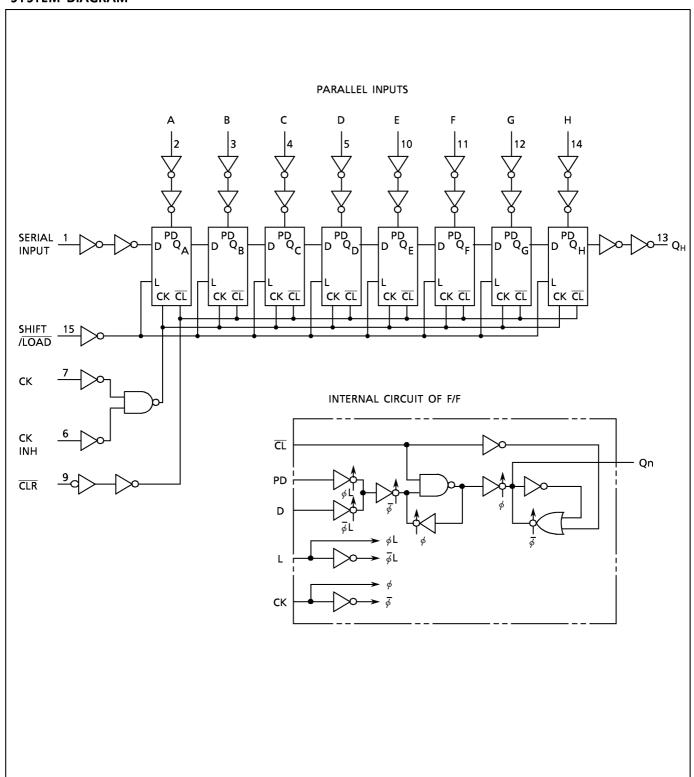
IEC LOGIC SYMBOL

1

2001-05-17


TRUTH TABLE

		INTERNAL	OUTPUT				
CLR	SHIFT/ LOAD	CK INH.	CK	SERIAL IN	PARALLEL A ······ H	QA QB	QH
L	Х	Х	Х	Х	Х	L L	L
Н	Х	Х	7_	Х	Х	NO CH	IANGE
Н	L	L		Х	a h	a b	h
Н	Н	L		Н	Х	H QAn	QGn
Н	Н	L	<u>-</u>	L	Х	L QAn	QGn
Н	Х	Н	Х	Х	Х	NO CH	IANGE


X : Don't Care

a ····· h: The level of steady state input voltage at inputs A through H respectively

TIMING CHART

SYSTEM DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	V _{cc}	-0.5~7.0	٧
DC Input Voltage	V _{IN}	$-0.5 \sim V_{CC} + 0.5$	V
DC Output Voltage	V _{OUT}	−0.5~V _{CC} + 0.5	V
Input Diode Current	I _{IK}	± 20	mA
Output Diode Current	I _{OK}	± 50	mA
DC Output Current	I _{OUT}	± 50	mA
DC V _{CC} /Ground Current	I _{cc}	± 100	mA
Power Dissipation	P _D	500 (DIP)* / 180 (SOP)	mW
Storage Temperature	T_{stg}	−65~150	°C

^{*500}mW in the range of Ta = -40° C \sim 65°C. From Ta = 65°C to 85°C a derating factor of -10mW/°C should be applied up to 300mW.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V_{CC}	2.0~5.5	V
Input Voltage	VIN	0~V _{cc}	V
Output Voltage	V _{OUT}	0~V _{cc}	V
Operating Temperature	T _{opr}	−40~85	°C
Input Rise and Fall Time	dt/dV	$0 \sim 100 \text{ (Vcc} = 3.3 \pm 0.3 \text{V)}$ $0 \sim 20 \text{ (Vcc} = 5 \pm 0.5 \text{V)}$	ns / V

DC ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION		V _{cc}	Ta = 25°C			Ta = -4	UNIT	
PARAIVIETER	STIVIBUL			(V)	MIN.	TYP.	MAX.	MIN.	MAX.	
High - Level Input Voltage	VIH				1.50 2.10 3.85	111		1.50 2.10 3.85	_ _ _	\ \
Low - Level Input Voltage	VIL				111	111	0.50 0.90 1.65	_ 	0.50 0.90 1.65	٧
High - Level Output Voltage	V _{OH}	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -50\mu A$	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5	_ _ _	1.9 2.9 4.4	_ _ _	,,
			$I_{OH} = -4mA$ $I_{OH} = -24mA$ $I_{OH} = -75mA*$	3.0 4.5 5.5	2.58 3.94 —		_ _ _	2.48 3.80 3.85	_ _ _	V
Low - Level	V _{OL}	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 50 \mu A$	2.0 3.0 4.5	111	0.0 0.0 0.0	0.1 0.1 0.1	1 1 1	0.1 0.1 0.1	
Output Voltage			$I_{OL} = 12\text{mA}$ $I_{OL} = 24\text{mA}$ $I_{OL} = 75\text{mA*}$	3.0 4.5 5.5	111	111	0.36 0.36 —		0.44 0.44 1.65	V
Input Leakage Current	I _{IN}	$V_{IN} = V_{CC}$ or GND		5.5	1	ı	±0.1	_	± 1.0	
Quiescent Supply Current	I _{cc}	$V_{IN} = V_{CC}$ or GND		5.5			8.0	_	80.0	μΑ

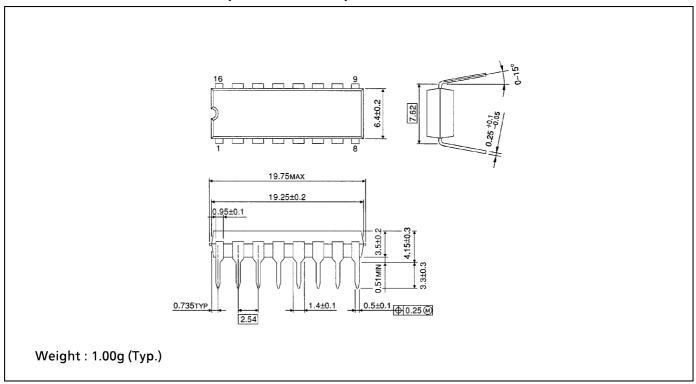
^{* :} This spec indicates the capability of driving 50Ω transmission lines. One output should be tested at a time for a 10ms maximum duration.

TIMING REQUIREMENTS (Input $t_r = t_f = 3ns$)

PARAMETER	SYMBOL	TEST CONDITION		Ta = 25°C	Ta = −40~85°C	UNIT
PARAIVIETER	STIMBOL		V _{cc} (V)	LIMIT	LIMIT	UNIT
Minimum Pulse Width (CK)	t _{W (H)} t _{W (L)}		3.3 ± 0.3 5.0 ± 0.5	7.0 5.0	7.0 5.0	
Minimum Pulse Width (CLR)	t _{W(L)}		3.3 ± 0.3 5.0 ± 0.5	8.0 5.0	8.0 5.0	
Minimum Set-up Time (SI, PI)	t _s		3.3 ± 0.3 5.0 ± 0.5	8.0 4.0	8.0 4.0	
Minimum Set-up Time (S/L)	t _s		3.3 ± 0.3 5.0 ± 0.5	7.0 4.0	7.0 4.0	ns
Minimum Hold Time (SI, PI)	t _h		3.3 ± 0.3 5.0 ± 0.5	0.5 0.5	0.5 0.5	
Minimum Hold Time (S/L)	t _h		3.3 ± 0.3 5.0 ± 0.5	1.0 1.0	1.0 1.0	
Minimum Removal Time (CLR)	t _{rem}		3.3 ± 0.3 5.0 ± 0.5	4.0 1.5	4.0 1.5	

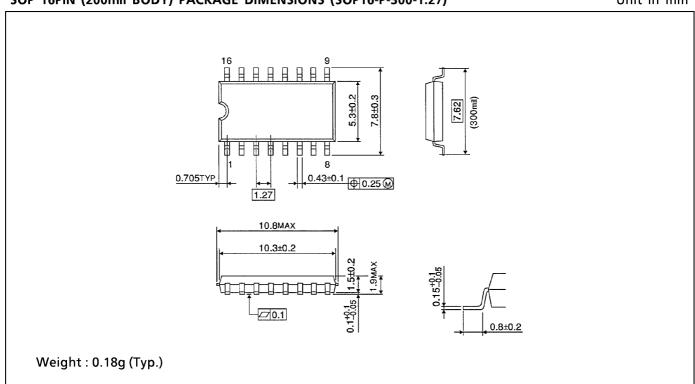
AC ELECTRICAL CHARACTERISTICS (C_L = 50pF , $\,R_L$ = 500 $\,\Omega$, Input $\,t_r$ = t_f = 3ns)

PARAMETER	SYMBOL	TEST CONDITION		•	Ta = 25°C	:	Ta = - 4	UNIT	
PARAIVIETER	STIVIBOL		V _{CC} (V)	MIN.	TYP.	MAX.	MIN.	MAX.	OINIT
Propagation Delay Time (CK-QH)	t _{pLH} t _{pHL}		3.3 ± 0.3 5.0 ± 0.5	_	9.4 6.6	16.1 10.0	1.0 1.0	18.3 11.4	
Propagation Delay Time (CLR-QH)	t _{pHL}		3.3 ± 0.3 5.0 ± 0.5		9.2 6.4	15.2 9.6	1.0 1.0	17.4 10.9	ns
Maximum Clock Frequency	f _{MAX}		3.3 ± 0.3 5.0 ± 0.5		105 150	_	55 90	_	MHz
Input Capacitance	C _{IN}			_	5	10	_	10	pF
Power Dissipation Capacitance	C _{PD} (1)			_	67	_	_	_	

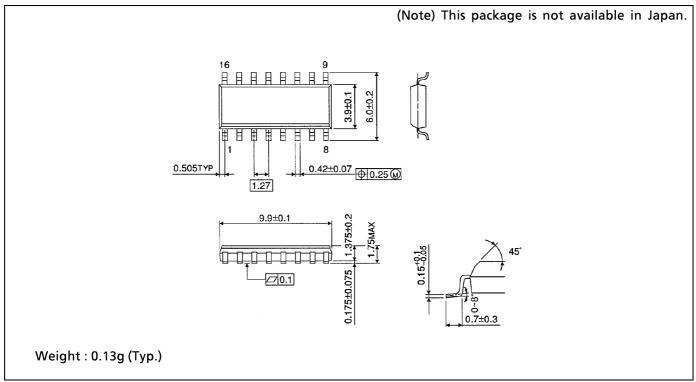

Note (1) C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

$$I_{CC}(opr.) = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$$


DIP 16PIN PACKAGE DIMENSIONS (DIP16-P-300-2.54A)

Unit in mm


SOP 16PIN (200mil BODY) PACKAGE DIMENSIONS (SOP16-P-300-1.27)

Unit in mm

SOP 16PIN (150mil BODY) PACKAGE DIMENSIONS (SOL16-P-150 -1.27)

Unit in mm

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.