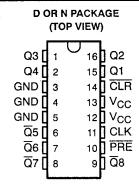
SN74AS305 OCTAL DIVIDE-BY-2 CIRCUIT/CLOCK DRIVER

D3596, JUNE 1990-REVISED SEPTEMBER 1990

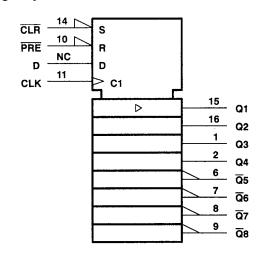
- Maximum Output Skew of 1 ns
- Maximum Pulse Skew of 1 ns
- Center Pin V_{CC} and GND Configurations
 Minimize High-Speed Switching Noise
- Package Options Include Plastic "Small Outline" Packages and Standard Plastic 300-mil DIPs

description

The SN74AS305 contains eight flip-flops designed to have low skew between outputs. The eight outputs (four in-phase with CLK and four out-of-phase) toggle on successive CLK pulses. PRE and CLR inputs are provided to set the Q and Q outputs high or low independent of the CLK pin.


The SN74AS305 has output and pulse skew parameters $t_{sk(0)}$ and $t_{sk(p)}$ to guarantee performance as a clock driver when a divide-by-two function is required.

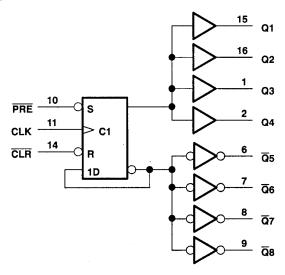
The SN74AS305 is characterized for operation from 0°C to 70°C .


FUNCTION TABLE

INPUTS			OUTPUTS		
CLR	PRE	CLK	Q1-Q4	Q5-Q8	
L	Н	Х	L	Н	
н	L	X	Н	L	
L	L	X	L†	L†	
н	Н	L	Q ₀	\overline{Q}_0	
Н	Н	1	\overline{Q}_0	Q ₀	

[†] This configuration will not persist when PRE or CLR returns to its inactive (high) level.

logic symbol[‡]



[‡] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

1

SN74AS305 OCTAL DIVIDE-BY-2 CIRCUIT/CLOCK DRIVER

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC}	7 V
Input voltage, V _I	
Operating free-air temperature range	. 0°C to 70°C
Storage temperature range	65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

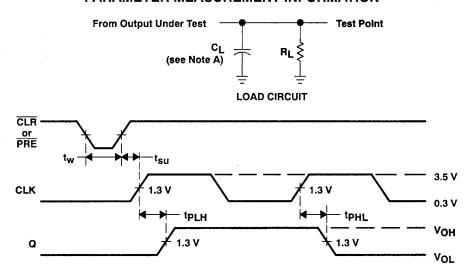
		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			٧
VIL	Low-level input voltage			0.8	٧
ЮН	High-level output current			- 24	mA
loL	Low-level output current			48	mA
TA	Operating free-air temperature	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CON	NDITIONS MIN		TYP	MAX	UNIT
V _{IK}	V _{CC} = 4.5 V,	I _I = – 18 mA			- 1.2	V
\/	V _{CC} = 4.5 V to 5.5 V,	I _{OH} = – 2 mA	V _{CC} -2			V
Voн	V _{CC} = 4.5 V,	I _{OH} = – 24 mA	2	2.8		v
VOL	V _{CC} = 4.5 V,	I _{OL} = 48 mA		0.3	0.5	V
I _I	V _{CC} = 5.5 V,	V _I = 7.0 V			0.1	mA
ИН	V _{CC} = 5.5 V,	V _I = 2.7 V			20	μΑ
ηL	V _{CC} = 5.5 V,	V _I = 0.4 V			- 0.5	mA
10 [‡]	V _{CC} = 5.5 V,	V _O = 2.25 V	- 50		- 150	mA
'cc	V _{CC} = 5.5 V,	See Note 1		40	70	mA

timing requirements

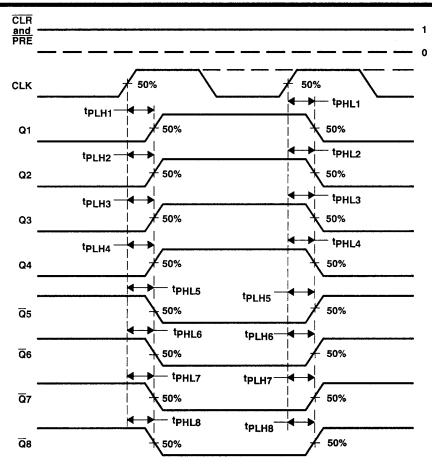
PARAMETER			MIN	NOM	MAX	UNIT
fclock	Clock frequency		0		80	MHz
		CLK high	4			
t _w	Pulse duration	CLK low	6			ns
		CLR or PRE low	5			
t _{su}	Setup time before CLK↑	CLR or PRE inactive	6			ns


switching characteristics over recommended operating free-air temperature range

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} ‡				80			MHz
[‡] PLH	CLK	Q, $\overline{\mathbf{Q}}$	R _L = 500 Ω,	2	6	9	ns
^t PHL	- CLK	u, u	C _L = 50 pF,	2	6	9	
^t PLH	PRE or CLR	Q, $\overline{\mathbf{Q}}$	V _{CC} = 4.5 V to 5.5 V	3	7	12	ns
[‡] PHL	PHE OI CEN	u, u		3	7	12	113
t-1/0)	CLK	Q, <u>Q</u>				1	ns
^t sk(O)	CLK	Q1 thru Q8	T			1.5	
t-1./->	CLK	Q1, Q8	R _L = 500 Ω, C _L = 10-30 pF, V _{CC} = 4.5 V to 5.5 V			1.5	ns
^t sk(p)	CLK	Q2 thru Q7				2	,,,,
t _r						4.5	ns
t _f						3.5	ns

 $[\]ddagger$ f_{max} minimum values are at C_L = 0 to 30 pF.

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C. ‡ The output conditions have been chosen to produce a current that closely approximates one half of the true shorst-circuit output current, I_{OS}. NOTE 1: ICC is measured with CLK and PRE grounded, then with CLK and CLR grounded.


PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. Input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $t_f = 2.5$ ns. $t_f = 2.5$ ns.

Figure 1. Load Circuit and Voltage Waveforms

NOTES: A. $t_{sk(0)}$ CLK to Q are calculated as the greater of:

- 1) The difference between the fastest and slowest of tpLHn (n = 1, 2, 3, 4),
- 2) the difference between the fastest and slowest of tpHLn (n = 1, 2, 3, 4).
- B. $t_{sk(0)}$ CLK to \overline{Q} are calculated as the greater of: 1) The difference between the fastest and slowest of t_{PLHn} (n = 5, 6, 7, 8), and 2) The difference between the fastest and slowest of tpHLn (n = 5, 6, 7, 8).
- C. $t_{sk(0)}$ CLK to Q and \overline{Q} are calculated as the greater of:
 - 1) The difference between the fastest and slowest of t_{PLHn} (n = 1, 2, 3, 4), t_{PHLn} (n = 5, 6, 7, 8) and 2) the difference between the fastest and slowest of t_{PHLn} (n = 1, 2, 3, 4), t_{PLHn} (n = 5, 6, 7, 8).
- D. $t_{sk(p)}$ is calculated as the greater of $|t_{pLHn} t_{pHLn}|$ (n = 1, 2, 3, ..., 8).

Figure 2. Waveforms for Calculation of tsk

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated