Product Preview # **Quad Buffer** The MC74VHC50 is an advanced high speed CMOS buffer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to 7V, allowing the interface of 5V systems to 3V systems. - High Speed: tpD = TBDns (Typ) at $V_{CC} = 5V$ - Low Power Dissipation: $I_{CC} = 2\mu A$ (Max) at $T_A = 25$ °C - High Noise Immunity: V_{NIH} = V_{NIL} = 28% V_{CC} - Power Down Protection Provided on Inputs - Balanced Propagation Delays - Designed for 2V to 5.5V Operating Range - Low Noise: Volp = 0.8V (Max) - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300mA - ESD Performance: HBM > 2000V; Machine Model > 200V - Chip Complexity: 36 FETs or 9 Equivalent Gates # A1 1 2 Y1 A2 3 4 Y2 A3 5 6 Y3 Y = A A4 9 8 Y4 A5 11 10 Y5 A6 13 12 Y6 LOGIC SYMBOL This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice. ### ON Semiconductor Formerly a Division of Motorola http://onsemi.com 14-LEAD TSSOP DT SUFFIX CASE 948G 14-LEAD SOIC EIAJ M SUFFIX CASE 965 # PIN CONNECTION AND MARKING DIAGRAM (Top View) For detailed package marking information, see the Marking Diagram section on page 4 of this data sheet. ### **ORDERING INFORMATION** | Device | Package | Shipping | |-------------|-----------|---------------| | MC74VHC50D | SOIC | 55 Units/Rail | | MC74VHC50DT | TSSOP | 96 Units/Rail | | MC74VHC50M | SOIC EIAJ | 50 Units/Rail | ### **FUNCTION TABLE** | A Input | Y Output | |---------|----------| | L | L | | Н | н | ### **MAXIMUM RATINGS*** | Characteristics | Symbol | Value | Unit | |---|---|--------------|------| | DC Supply Voltage | Vcc | -0.5 to +7.0 | V | | DC Input Voltage | VIN | -0.5 to +7.0 | V | | DC Output Voltage V _{CC} = 0 High or Low State | V _{OUT} -0.5 to 7.0
-0.5 to V _{CC} + 0.5 | | V | | Input Diode Current | lik | -20 | mA | | Output Diode Current $(V_{OUT} < GND; V_{OUT} > V_{CC})$ | lok | +20 | mA | | DC Output Current, per Pin | lout | +25 | mA | | DC Supply Current, V _{CC} and GND | lcc | +50 | mA | | Power Dissipation in Still Air, SOIC Packages† TSSOP Package† | PD | 500
450 | mW | | Lead temperature, 1 mm from case for 10 s | TL | 260 | °C | | Storage temperature | T _{stg} | -65 to +150 | °C | ^{*} Maximum Ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied. Functional operation should be restricted to the Recommended Operating Conditions. ### **RECOMMENDED OPERATING CONDITIONS** | Characteristics | Symbol | Min | Max | Unit | |---|---------------------------------|-------------|-----------|------| | DC Supply Voltage | Vcc | 2.0 | 5.5 | V | | DC Input Voltage | VIN | 0.0 | 5.5 | V | | DC Output Voltage | Vout | 0.0 | Vcc | V | | Operating Temperature Range | T _A | - 55 | +85 | °C | | Input Rise and Fall Time $V_{CC} = 3.3V \pm 0.3V$
$V_{CC} = 5.0V \pm 0.5V$ | t _r , t _f | 0 | 100
20 | ns/V | [†]Derating — SOIC Packages: – 7 mW/°C from 65° to 125°C TSSOP Package: – 6.1 mW/°C from 65° to 125°C ### DC ELECTRICAL CHARACTERISTICS | | | | VCC | T _A = 25°C | | T _A ≤ 85°C | | T _A ≤ 125°C | | | | |-----------------|--|--|--------------------------|----------------------------|-------------------|------------------------------|----------------------------|-------------------------------|----------------------------|----------------------------|------| | Symbol | Parameter | Test Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | VIH | Minimum High-Level
Input Voltage | | 2.0
3.0
4.5
5.5 | 1.5
2.1
3.15
3.85 | | | 1.5
2.1
3.15
3.85 | | 1.5
2.1
3.15
3.85 | | V | | V _{IL} | Maximum Low–Level Input Voltage | | 2.0
3.0
4.5
5.5 | | | 0.5
0.9
1.35
1.65 | | 0.5
0.9
1.35
1.65 | | 0.5
0.9
1.35
1.65 | V | | VOH | Minimum High-Level
Output Voltage
V _{IN} = V _{IH} or V _{IL} | $V_{IN} = V_{IH} \text{ or } V_{IL}$
$I_{OH} = -50 \mu A$ | 2.0
3.0
4.5 | 1.9
2.9
4.4 | 2.0
3.0
4.5 | | 1.9
2.9
4.4 | | 1.9
2.9
4.4 | | V | | | | V _{IN} = V _{IH} or V _{IL}
I _{OH} = -4mA
I _{OH} = -8mA | 3.0
4.5 | 2.58
3.94 | | | 2.48
3.80 | | 2.34
3.66 | | V | | VOL | Maximum Low-Level
Output Voltage
VIN = VIH or VIL | VIN = VIH or VIL | 2.0
3.0
4.5 | | 0.0
0.0
0.0 | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | V | | | | VIN = VIH or VIL
IOL = 4mA
IOL = 8mA | 3.0
4.5 | | | 0.36
0.36 | | 0.44
0.44 | | 0.52
0.52 | V | | I _{IN} | Maximum Input
Leakage Current | V _{IN} = 5.5V or GND | 0 to
5.5 | | | ±0.1 | | ±1.0 | | ±1.0 | μА | | lcc | Maximum Quiescent
Supply Current | $V_{IN} = V_{CC}$ or GND | 5.5 | | | 2.0 | | 20 | | 40 | μА | ### AC ELECTRICAL CHARACTERISTICS ($C_{load} = 50 \text{ pF}$, Input $t_f = t_f = 3.0 \text{ns}$) | | | | | T _A = 25°C | | T _A ≤ 85°C | | T _A ≤ 125°C | | | | |-----------------|------------------------------|--------------------------|--------------------------------|-----------------------|------------|-----------------------|-----|------------------------|-----|--------------|------| | Symbol | Parameter | Test Condi | tions | Min | Тур | Max | Min | Max | Min | Max | Unit | | tPLH,
tPHL | Maximum Propogation Delay, | $V_{CC} = 3.0 \pm 0.3 V$ | $C_L = 15 pF$
$C_L = 50 pF$ | | 5.0
7.5 | 7.1
10.6 | | 8.5
12.0 | | 10.0
14.5 | ns | | | Input A to Y | $V_{CC} = 5.0 \pm 0.5 V$ | $C_L = 15 pF$
$C_L = 50 pF$ | | 3.8
5.3 | 5.5
7.5 | | 6.5
8.5 | | 8.0
10.0 | | | C _{IN} | Maximum Input
Capacitance | | | | 4 | 10 | | 10 | | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0V | | |-----------------|---|--|----| | C _{PD} | Power Dissipation Capacitance (Note NO TAG) | 18 | pF | ^{1.} CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD • VCC • f_{in} + I_{CC}. CPD is used to determine the no–load dynamic power consumption; PD = CPD • V_{CC}² • f_{in} + I_{CC} • V_{CC}. ### **NOISE CHARACTERISTICS** (Input $t_f = t_f = 3.0 \text{ns}$, $C_L = 50 \text{pF}$, $V_{CC} = 5.0 \text{V}$) | | | T _A = 25°C | | | |------------------|--|-----------------------|------|------| | Symbol | Characteristic | Тур | Max | Unit | | VOLP | Quiet Output Maximum Dynamic VOL | 0.4 | 0.8 | V | | VOLV | Quiet Output Minimum Dynamic V _{OL} | -0.4 | -0.8 | V | | VIHD | Minimum High Level Dynamic Input Voltage | | 3.5 | V | | V _{ILD} | Maximum Low Level Dynamic Input Voltage | | 1.5 | V | *Includes all probe and jig capacitance Figure 2. Test Circuit Figure 1. Switching Waveforms Figure 3. Input Equivalent Circuit ### **MARKING DIAGRAMS** (Top View) *See Applications Note #AND8004/D for date code and traceability information. ### **PACKAGE DIMENSIONS** ### **D SUFFIX** PLASTIC SOIC PACKAGE CASE 751A-03 ISSUE F - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIM | MILLIMETERS INC | | HES | | | | |-----|--------|-----------------|-------|-------|--|--|--| | DIM | MIN | MAX | MIN | MAX | | | | | Α | 8.55 | 8.75 | 0.337 | 0.344 | | | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | | | G | 1.27 | BSC | 0.050 | BSC | | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | | | M | 0° | 7° | 0° | 7° | | | | | Р | 5.80 | 6.20 | 0.228 | 0.244 | | | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | | | ### **PACKAGE DIMENSIONS** ### **DT SUFFIX** PLASTIC TSSOP PACKAGE CASE 948G-01 **ISSUE O** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR - PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED - AT DATUM PLANE -W-. | | MILLIN | IETERS | INC | HES | | |-----|--------|--------|-----------|-------|--| | DIM | MIN | MAX | MIN | MAX | | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | | В | 4.30 | 4.50 | 0.169 | 0.177 | | | С | | 1.20 | | 0.047 | | | D | 0.05 | 0.15 | 0.002 | 0.006 | | | F | 0.50 | 0.75 | 0.020 | 0.030 | | | G | 0.65 | BSC | 0.026 | BSC | | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | | J | 0.09 | 0.20 | 0.004 | 0.008 | | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | | K | 0.19 | 0.30 | 0.007 | 0.012 | | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | | L | 6.40 | | 0.252 BSC | | | | М | 0° | 8° | 0° | 8° | | ### **PACKAGE DIMENSIONS** ### **M SUFFIX** PLASTIC SOIC EIAJ PACKAGE CASE 965-01 **ISSUE O** ### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH - MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE 1.0 COATED ON THE 1.0 WER DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIMETERS INCI | | | HES | |----------------|------------------|-------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 2.05 | | 0.081 | | Α ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | b | 0.35 | 0.50 | 0.014 | 0.020 | | С | 0.18 | 0.27 | 0.007 | 0.011 | | D | 9.90 | 10.50 | 0.390 | 0.413 | | Е | 5.10 | 5.45 | 0.201 | 0.215 | | е | 1.27 BSC | | 0.050 | BSC | | HE | 7.40 | 8.20 | 0.291 | 0.323 | | 0.50 | 0.50 | 0.85 | 0.020 | 0.033 | | LF | 1.10 | 1.50 | 0.043 | 0.059 | | M | 0 ° | 10 ° | 0 ° | 10° | | Q ₁ | 0.70 | 0.90 | 0.028 | 0.035 | | Z | | 1.42 | | 0.056 | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. ### **PUBLICATION ORDERING INFORMATION** ### USA/EUROPE Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line*: 303-675-2167 800–344–3810 Toll Free USA/Canada *To receive a Fax of our publications N. America Technical Support: 800-282-9855 Toll Free USA/Canada ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support **Phone**: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Email: ONlit-asia@hibbertco.com **JAPAN**: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.