TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

T C 7 M A R 2 2 4 5 F K

Low-Voltage Octal Bus Transceiver with 3.6 V Tolerant Inputs and Outputs

The TC7MAR2245FK is a high performance CMOS octal bus transceiver. Designed for use in 1.8, 2.5 or 3.3 V systems, it achieves high speed operation while maintaining the CMOS low power dissipation.

It is also designed with over voltage tolerant inputs and outputs up to 3.6 V. $\,$

The direction of data transmission is determined by the level of the DIR inputs. The \overline{OE} inputs can be used to disable the device so that the busses are effectively isolated.

The 26- Ω series resistor helps reducing output overshoot and undershoot without external resistor.

All inputs are equipped with protection circuits against static discharge.

Features

- $26 \cdot \Omega$ series resistors on outputs.
- Low voltage operation: VCC = 1.8~3.6 V
- High speed operation:
 - $t_{pd} = 4.4 \text{ ns} (max) (V_{CC} = 3.0 \sim 3.6 \text{ V})$ $t_{pd} = 5.6 \text{ ns} (max) (V_{CC} = 2.3 \sim 2.7 \text{ V})$ $t_{pd} = 9.8 \text{ ns} (max) (V_{CC} = 1.8 \text{ V})$
- 3.6 V tolerant inputs and outputs.
- Bidirectional interface between 2.5 V and 3.3 V signals. (*1)
- Power down protection is provided on all inputs and outputs. (*2)
- Supports live insertion/withdrawal (*3)

*1: Do not apply a signal to any bus terminal when it is in the output mode. Damage may result.

- *2: All floating (high impedance) bus terminal must have their input level fixed by means of pull up or pull down resistors.
- *3: To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

Weight: 0.03 g (typ.)

- Output current: IOH/IOL = ±12 mA (min) (VCC = 3.0 V) IOH/IOL = ±8 mA (min) (VCC = 2.3 V) IOH/IOL = ±4 mA (min) (VCC = 1.8 V)
- Latch-up performance: ±300 mA
 - ESD performance: Machine model > ±200 V Human body model > ±2000 V

• Package: VSSOP (US20)

000630EBA1

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

[•] The Toshiba products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These Toshiba products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba products listed in this document shall be made at the customer's own risk.

The products described in this document are subject to the foreign exchange and foreign trade laws.

[•] The information contained herein is subject to change without notice.

<u>TOSHIBA</u>

Pin Assignment (top view)

IEC Logic Symbol

Truth Table

Inp	uts	Outputs	Fund	ction
ŌĒ	DIR	Outputs	A-Bus	B-Bus
L	L	A = B	Output	Input
L	Н	B = A	Input	Output
Н	Х	Z	Z	

X: Don't care

Z: High impedance

Maximum Ratings

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	-0.5~4.6	V	
DC input voltage (DIR, OE)	V _{IN}	-0.5~4.6	V	
DC bus I/O voltage	Vuo	-0.5~4.6 (Note1)	V	
DC bus 1/O voltage	V _{I/O}	-0.5~V _{CC} + 0.5 (Note2)	v	
Input diode current	I _{IK}	-50	mA	
Output diode current	I _{OK}	±50 (Note3)	mA	
DC output current	IOUT	±50	mA	
Power dissipation	PD	180	mW	
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA	
Storage temperature	T _{stg}	-65~150	°C	

Note1: Off-state

Note2: High or low state. IOUT absolute maximum rating must be observed.

Note3: V_{OUT} < GND, V_{OUT} > V_{CC}

Recommended Operating Range

Characteristics	Symbol	Rating	Unit
Supply voltage	V _{CC}	1.8~3.6	V
Supply voltage	VCC	1.2~3.6 (Note4)	v
Input voltage (DIR, OE)	V _{IN}	-0.3~3.6	V
Bus I/O voltage	Vuo	0~3.6 (Note5)	V
Bus I/O voltage	V _{I/O}	0~V _{CC} (Note6)	v
		±12 (Note7)	
Output current	I _{OH} /I _{OL}	±8 (Note8)	mA
		±4 (Note9)	
Operating temperature	T _{opr}	-40~85	°C
Input rise and fall time	dt/dv	0~10 (Note10)	ns/V

Note4: Data retention only

Note5: Off-state

Note6: High or low state

Note7: V_{CC} = 3.0~3.6 V

Note8: V_{CC} = 2.3~2.7 V

Note9: $V_{CC} = 1.8 V$

Note10: $V_{IN} = 0.8 \sim 2.0 \text{ V}, V_{CC} = 3.0 \text{ V}$

Electrical Characteristics

DC Characteristics (Ta = -40~85°C, 2.7 V < V_{CC} \leq 3.6 V)

Characte	rictics	Symbol	Tos	t Condition		Min	Mox	Unit
Characte	1151105	Symbol	165	Condition	V _{CC} (V)	IVIIII	Max 0.8 0.2 0.4 0.55 0.8 ±5.0 ±10.0 10.0	Onit
Input voltage	High level	VIH	$V_{IL} = V_{IH} \text{ or } V_{IL}$ $OH = V_{IN} = V_{IH} \text{ or } V_{IL}$ $OL = V_{IN} = V_{IH} \text{ or } V_{IL}$ $IN = V_{IN} = 0 - 3.6 \text{ V}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	_	2.7~3.6	2.0		v
input voltage	Low level	VIL		—	2.7~3.6	_	0.8	v
Output voltage				I _{OH} = −100 μA	2.7~3.6	V _{CC} - 0.2	_	
	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -6 \text{ mA}$	2.7	2.2			
			$I_{OH} = -8 \text{ mA}$	3.0	2.4			
				$I_{OH} = -12 \text{ mA}$	3.0	2.2		V
			DL VIN = VIH or VIL	$I_{OL} = 100 \ \mu A$	2.7~3.6		0.2	
		Ve		$I_{OL} = 6 \text{ mA}$	2.7		0.4	
	LOW IEVEI	ei vor		I _{OL} = 8 mA	3.0	—	0.55	
				$I_{OL} = 12 \text{ mA}$	3.0	_	0.8	
Input leakage curr	rent	I _{IN}	$V_{IN} = 0 \sim 3.6 V$		2.7~3.6	_	±5.0	μA
3-state output off-state current		I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0~3.6 \text{ V}$		2.7~3.6	_	±10.0	μA
Power off leakage	current	IOFF	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μΑ
Quiescent supply current		1	$V_{IN} = V_{CC}$ or GND		2.7~3.6		20.0	
		1CC	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 \text{ V}$		2.7~3.6		±20.0	μA
Increase in I _{CC} pe	Low levelVOLVIN = VIH or VILcurrentINVIN = 0~3.6 Vcoff-state currentIOZVIN = VIH or VILVOUT = 0~3.6 VVOUT = 0~3.6 Vkage currentIOFFVIN, VOUT = 0~3.6 Vpoly currentICCVIN = VCC or GNDVCC \leq (VIN, VOUT) \leq 3.6 V			2.7~3.6		750		

DC Characteristics (Ta = -40~85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Character	ristics	Symbol	Test	Condition	V _{CC} (V)	Min	Max	Unit
Input voltage	High level	VIH		_	2.3~2.7	1.6	_	V
Input voltage	Low level	VIL		_	2.3~2.7		0.7	v
Output voltage				I _{OH} = -100 μA	2.3~2.7	V _{CC} - 0.2	_	
	High level	Vон	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -4 \text{ mA}$	2.3	2.0	_	
	-			$I_{OH} = -6 \text{ mA}$	2.3	1.8	_	V
				$I_{OH} = -8 \text{ mA}$	2.3	1.7	_	
			$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 100 μA	2.3~2.7	_	0.2	
	Low level	V _{OL}		I _{OL} = 6 mA	2.3	_	0.4	
				$I_{OL} = 8 \text{ mA}$	2.3	_	0.6	
Input leakage curre	ent	I _{IN}	V _{IN} = 0~3.6 V		2.3~2.7	_	±5.0	μA
2 state output off a	toto ourropt	1	$V_{IN} = V_{IH}$ or V_{IL}		2.3~2.7		±10.0	•
3-state output off-state current		loz	V _{OUT} = 0~3.6 V		2.3~2.1		±10.0	μA
Power off leakage	current	I _{OFF}	V _{IN} , V _{OUT} = 0~3.6 V		0	_	10.0	μA
Low level Input leakage current 3-state output off-state current Power off leakage current Quiescent supply current		$V_{IN} = V_{CC}$ or GND		2.3~2.7	—	20.0	μA	
Quiescent supply (Icc	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3$	3.6 V	2.3~2.7	_	±20.0	μΑ

DC Characteristics (Ta = $-40 \sim 85^{\circ}$ C, 1.8 V \leq V_{CC} < 2.3 V)

Characteris	stics	Symbol	Test Condition			Min	Max	Unit
		,			$V_{CC}\left(V\right)$		Max 	
Input voltage	High level	VIH		_	1.8~2.3	$0.7 \times V_{CC}$		V
input voltage	Low level	V _{IL}	VIH—VIL—VIL—VOHVIN = VIH or VILIOHVIN = VIH or VILIOLVIN = VIH or VILIINVIN = 0~3.6 VIOZVIN = VIH or VILVOUT = 0~3.6 V	—	1.8~2.3		-	v
High level	V _{OH}	VIN = VIH or VIL	I _{OH} = -100 μA	1.8	V _{CC} - 0.2			
Output voltage				$I_{OH} = -4 \text{ mA}$	1.8	1.4	_	V
		_ow level V _{OL}	$V_{IN} = V_{IH}$ or V_{IL}	I _{OL} = 100 μA	1.8	_	0.2	
	LOW IEVEI			I _{OL} = 4 mA	1.8		0.3	
Input leakage currer	nt	l _{IN}	V _{IN} = 0~3.6 V	V _{IN} = 0~3.6 V		_	±5.0	μA
2 state output off st	ato curront	1	$V_{IN} = V_{IH} \text{ or } V_{IL}$		1.8		+10.0	μA
3-state output off-state current I _O		νοz	V _{OUT} = 0~3.6 V		1.0		±10.0	μA
Power off leakage c	urrent	I _{OFF}			0	_	10.0	μA
Quiescent supply current			$V_{IN} = V_{CC} \text{ or } GND$		1.8		20.0	
Quiescent supply ct		UCC	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 \text{ V}$		1.8		±20.0	μA

AC Characteristics (Ta = -40~85°C, Input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$, $R_L = 500 \Omega$)

Characteristics	Symbol	Test Condition		Min	Max	Unit
			V _{CC} (V)	/cc (V) Image: square s		
	+		1.8	1.5	9.8	
Propagation delay time	t _{pLH} t _{pHL}	Figure 1, Figure 2	2.5 ± 0.2	0.8	5.6	ns
	чрн∟		$\textbf{3.3}\pm\textbf{0.3}$	0.6	4.4	
3-state output enable time	+		1.8	1.5	9.8	
	t _{pZL} t _{pZH}	Figure 1, Figure 3	2.5 ± 0.2	0.8	6.6	ns
			3.3 ± 0.3	0.6	5.0	
	t _{pLZ} t _{pHZ}		1.8	1.5	8.5	
3-state output disable time		Figure 1, Figure 3	2.5 ± 0.2	0.8	4.7	ns
			3.3 ± 0.3	0.6	4.2	
			1.8		0.5	
Output to output skew	t _{osLH}	(Note11)	2.5 ± 0.2		0.5	ns
	t _{osHL}		3.3 ± 0.3	_	0.5	

For $C_L = 50 \text{ pF}$, add approximately 300 ps to the AC maximum specification.

Note11: This parameter is guaranteed by design.

 $(t_{OSLH} = |t_{pLHm} - t_{pLHn}|, t_{OSHL} = |t_{pHLm} - t_{pHLn}|)$

Dynamic Switching Characteristics (Ta = 25°C, Input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$)

Characteristics	Symbol	Test Condition		V _{CC} (V)	Тур.	Unit
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$	(Note12)	1.8	0.15	
Quiet output maximum dynamic V_{OL}	VOLP	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note12)	2.5	0.25	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note12)	3.3	0.35	
	V _{OLV}	$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note12)	1.8	-0.15	v
Quiet output minimum dynamic V_{OL}		$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note12)	2.5	-0.25	
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note12)	3.3	-0.35	
Quiet output minimum dynamic V _{OH}		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$	(Note12)	1.8	1.55	
	V _{OHV}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note12)	2.5	2.05	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note12)	3.3	2.65	

Note12: This parameter is guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	st Condition			Unit
Characteristics	Symbol	Test Condition		$V_{CC}(V)$	6 7	Unit
Input capacitance	C _{IN}	DIR, OE		1.8, 2.5, 3.3	6	pF
Bus I/O capacitance	C _{I/O}	An, Bn		1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$ (New York Constraints)	lote13)	1.8, 2.5, 3.3	20	pF

Note13: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$

TOSHIBA

AC Test Circuit

AC Waveform

Figure 2 t_{pLH}, t_{pHL}

TOSHIBA

V_{OH} – 0.3 V

V_{OH} – 0.15 V

V_{OH} – 0.15 V

VY

Package Dimensions

VSSOP20-P-0030-0.50

Unit : mm

Weight: 0.03 g (typ.)