

7516 Central Industrial Drive Riviera Beach, Florida 33404 PHONE: (561) 842-0305

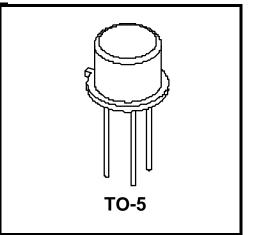
FAX: (561) 842-0305

2N6303

APPLICATIONS:

- High-Speed Switching
- Medium-Current Switching
- High-Frequency Amplifiers

FEATURES:


- Collector-Emitter Sustaining Voltage: V_{CEO(sus)} = -80 Vdc (Min)
- DC Current Gain: h_{FE} = 30-150 @ I_C = 1.5 Adc
- Low Collector-Emitter Saturation Voltage:
 V_{CE(sat)} = 0.75 Vdc @ I_C = 1.5 Adc
- High Current-Gain Bandwidth Product: f_T = 90 MHz (Typ)

Silicon PNP Power Transistors

DESCRIPTION:

These power transistors are produced by PPC's DOUBLE DIFFUSED PLANAR process. This technology produces high voltage devices with excellent switching speeds, frequency response, gain linearity, saturation voltages, high current gain, and safe operating areas. They are intended for use in Commercial, Industrial, and Military power switching, amplifier, and regulator applications.

Ultrasonically bonded leads and controlled die mount techniques are utilized to further increase the SOA capability and inherent reliability of these devices. The temperature range to 200°C permits reliable operation in high ambients, and the hermetically sealed package insures maximum reliability and long life.

ABSOLUTE MAXIMUM RATINGS:

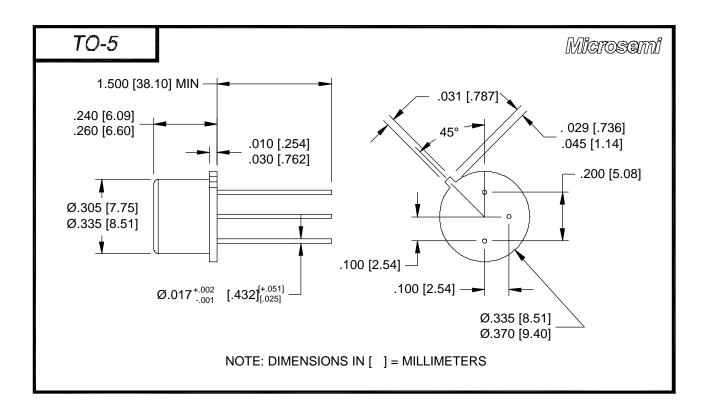
SYMBOL	CHARACTERISTIC	VALUE	UNITS
V _{CEO} *	Collector-Emitter Voltage	- 80	Vdc
V _{CB} *	Collector-Base Voltage	- 80	Vdc
V _{EB} *	Emitter-Base Voltage	- 4.0	Vdc
lc*	Peak Collector Current	10	Adc
lc*	Continuous Collector Current	3.0	Adc
l _B *	Base Current	0.5	Adc
T _{STG} *	Storage Temperature	-65 to 200	°C
T _J *	Operating Junction Temperature	-65 to 200	∘ C
P _D *	Total Device Dissipation	6.0	Watts
	T _C = 25°C		
	Derate above 25°C	34.3	mW/°C
P _D *	Total Device Dissipation	1.0	Watts
	T _A = 25°C	F 74	W. 6
	Derate above 25°C	5.71	mW/∘C
θ JC	Thermal Resistance	20	°C/W
	Junction to Case	29 175	°C/W
	Junction to Ambient	1/5	C/VV

^{*} Indicates JEDEC registered data.

ELECTRICAL CHARACTERISTICS:

(25°Case Temperature Unless Otherwise Noted)

	<u> </u>	,	l		
SYMBOL	CHARACTERISTIC	TEST CONDITIONS	VALUE		Units
		TEST CONDITIONS		Max.	Oilles
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	I _C = 20 mAdc, I _B = 0 (Note 1)	- 80		Vdc
BV _{CBO} *	Collector-Base Breakdown Voltage	$I_C = 100 \mu Adc$, $I_E = 0$	- 80		Vdc
BV _{EBO} *	Emitter-Base Breakdown Voltage	$I_E = 100 \mu\text{Adc}, I_C = 0$	- 4.0		Vdc
I _{CEX} *	Collector Cutoff Current	V _{CE} = - 80V, V _{BE(off)} = 2.0 Vdc		1.0	μ Adc
I _{CBO} *	Collector Cutoff Current	V _{CB} = - 80V, I _E = 0, T _C = 150°C		150	μ Adc
h _{FE} *	DC Current Gain (Note 1)	I _C = 500 mAdc, V _{CE} = - 1.0 Vdc	35		
		I _C = 1.5 Adc, V _{CE} = - 2.0 Vdc	30	150	
		$I_C = 2.5 \text{ Adc}, V_{CE} = -3.0 \text{ Vdc}$	20		
		$I_C = 3.0 \text{ Adc}, V_{CE} = -5.0 \text{ Vdc}$	20		
V _{CE(sat)} *	Collector-Emitter Saturation Voltage (Note 1)	I _C = 500 mAdc, I _B = 50 mAdc		- 0.5	Vdc
		I _C = 1.5 Adc, I _B = 150 mAdc		- 0.75	Vdc
		I _C = 2.5 Adc, I _B = 250 mAdc		- 1.3	Vdc
*BE(Sat)	Base-Emitter Saturation Voltage (Note 1)	I _C = 500 mAdc, I _B = 50 mAdc		- 1.0	Vdc
		I _C = 1.5 Adc, I _B = 150 mAdc	- 0.9	- 1.4	Vdc
		I _C = 2.5 Adc, I _B = 250 mAdc		- 2.0	Vdc
f _T *	Current Gain Bandwidth Product (Note 2)	I _C = 100 mAdc, V _{CE} = -5.0 Vdc, f _{test} = 20 MHz	60		MHz
C _{ob} *	Output Capacitance	V _{CB} = - 10 Vdc, I _E = 0, f = 0.1 MHz		120	pF
C _{ib} *	Input Capacitance	V _{EB} = - 3.0 Vdc, I _C = 0, f = 0.1 MHz		1000	рF
td*	Delay Time	V _{CC} = - 30 Vdc, V _{BE(off)} = 0, I _C =1.5 Adc, I _{B1} = 150 mAdc		35	ns
tr*	Rise Time	V _{CC} = - 30 Vdc, V _{BE(off)} = 0, I _C =1.5 Adc, I _{B1} = 150 mAdc		65	ns
ts*	Storage Time	V _{CC} = - 30 Vdc, IC = 1.5 Adc, I _{B1} = I _{B2} =150 mAdc		325	ns
tf*	Fall Time	V _{CC} = - 30 Vdc, IC = 1.5 Adc, I _{B1} = I _{B2} =150 mAdc		75	ns
		<u> </u>		I	


Note 1: Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2.0\%$.

Note 2: fT = |hfe| * f_{test}

^{*} Indicates JEDEC registered data.

PACKAGE MECHANICAL DATA:

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.