

Typical Applications

An excellent cascadable 50 Ohm Gain Block or LO Driver for:

- Microwave & VSAT Radios
- Test Equipment
- Military EW, ECM, C³I
- Space Telecom

Functional Diagram

Features

Gain: 15 dB

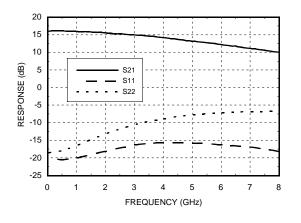
P1dB Output Power: +16 dBm Stable Gain Over Temperature

50 Ohm I/O's

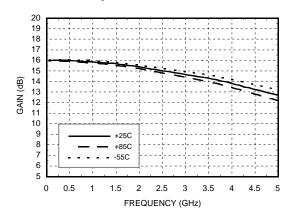
Small Size: 0.38 mm x 0.58 mm x 0.1 mm

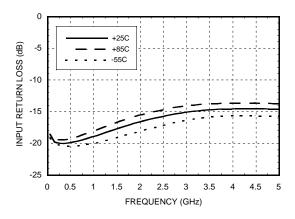
General Description

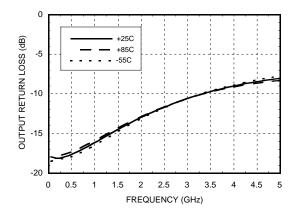
The HMC395 die is a GaAs InGaP Heterojunction Bipolar Transistor (HBT) Gain Block MMIC DC - 4 GHz amplifier. This amplifier die can be used as either a cascadable 50 Ohm gain stage or to drive the LO of HMC mixers with up to +17dBm output power. The HMC395 offers 16 dB of gain and an output IP3 of +31dBm while requiring only 54mA from a +5V supply. The Darlington feedback pair used results in reduced sensitivity to normal process variations and yields excellent gain stability over temperature while requiring a minimal number of external bias components. The HMC395 can easily be integrated into Multi-Chip-Modules (MCMs) due to its small (0.22mm²) size. All data is with the chip in a 50 Ohm test fixture connected via 0.025mm (1mil) diameter wire bonds of minimal length 0.5mm (20mils).

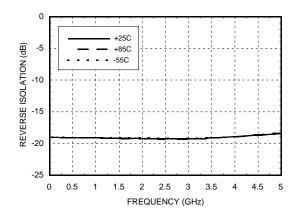

Electrical Specifications, Vs=+5.0V, Rbias=22 Ohm, $T_{\Delta}=+25^{\circ} C$

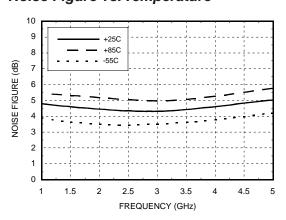
Parameter		Min.	Тур.	Max.	Units
Gain	DC - 1.0 GHz 1.0 - 4.0 GHz		16 15		dB dB
Gain Variation Over Temperature	DC - 1.0 GHz 1.0 - 4.0 GHz		0.004 0.008		dB/ °C dB/ °C
Input Return Loss	DC - 1.0 GHz 1.0 - 4.0 GHz		18 15		dB dB
Output Return Loss	DC - 1.0 GHz 1.0 - 4.0 GHz		17 10		dB dB
Reverse Isolation	DC - 4.0 GHz		19		dB
Output Power for 1 dB Compression (P1dB)	DC - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 4.0 GHz		16 15 10		dBm dBm dBm
Output Third Order Intercept (IP3)	DC - 1.0 GHz 1.0 - 2.0 GHz 2.0 - 4.0 GHz		31 28 22		dBm dBm dBm
Noise Figure	DC - 4.0 GHz		4.5		dB
Supply Current (Icq)			54		mA


Note: Data taken with broadband bias tee on device output.

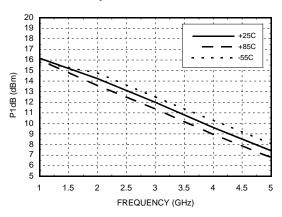

Gain & Return Loss


Gain vs. Temperature

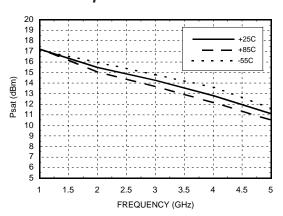

Input Return Loss vs. Temperature

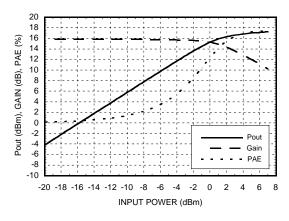

Output Return Loss vs. Temperature

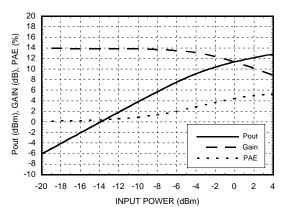
Reverse Isolation vs. Temperature

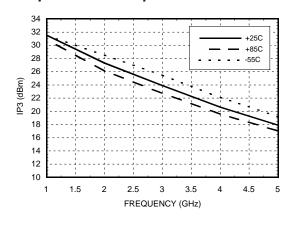


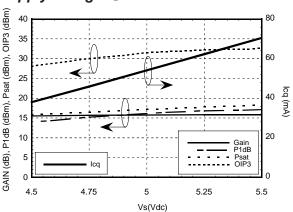
Noise Figure vs. Temperature




P1dB vs. Temperature

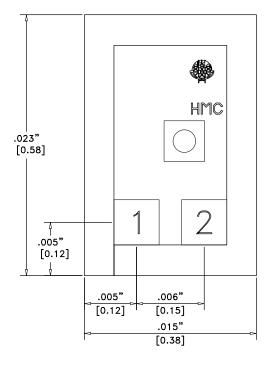

Psat vs. Temperature


Power Compression @ 1 GHz


Power Compression @ 4 GHz

Output IP3 vs. Temperature

Gain, Power, OIP3 & Supply Current vs. Supply Voltage @ 1 GHz

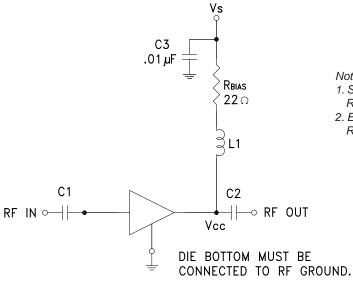


Absolute Maximum Ratings

Collector Bias Voltage (Vcc)	+7.0 Vdc	
RF Input Power (RFin)(Vcc = +5.0 Vdc)	+10 dBm	
Junction Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 7.3 mW/°C above 85 °C)	0.475 W	
Thermal Resistance (junction to die bottom)	137 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-55 to +85 °C	

Outline Drawing

NOTES:


- 1. ALL DIMENSIONS IN INCHES [MILLIMETERS]
- 2. ALL TOLERANCES ARE ±0.001 (0.025)
- 3. DIE THICKNESS IS 0.004" (0.100) BACKSIDE IS GROUND
- 4. BOND PADS ARE 0.004" (0.100) SQUARE 5. BOND PAD SPACING, CTR-CTR: 0.006 (0.150)
- 6. BACKSIDE METALLIZATION: GOLD
- 7. BOND PAD METALLIZATION: GOLD

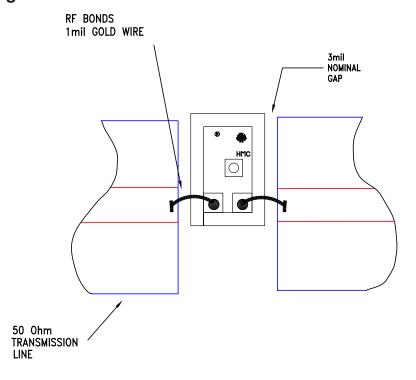
Pad Descriptions

Pin Number	Function	Description	Interface Schematic
1	RFIN	This pin is DC coupled. An off chip DC blocking capacitor is required.	RFIN
2	RFOUT	RF output and DC Bias for the output stage.	=
Die Bottom	GND	Die bottom must be connected to RF/DC ground.	

Application Circuit

Note:

- 1. Select Rbias to achieve Icq using equation below, Rbias ≥ 22 Ohm.
- 2. External blocking capacitors are required on RFIN and RFOUT.


$$Icq = \frac{Vs - 3.9}{Rbias}$$

Recommended Component Values

Component	Frequency (MHz)				
	50	100	500	1000	4000
L1	270 nH	270 nH	100 nH	56 nH	8.2 nH
C1, C2	0.01 μF	0.01 μF	500 pF	100 pF	100 pF

Assembly Diagram

Handling Precautions

Follow these precautions to avoid permanent damage.

Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean the chip using liquid cleaning systems.

Static Sensitivity: Follow ESD precautions to protect against $> \pm 250$ V ESD strikes.

Transients: Suppress instrument and bias supply transients while bias is applied. Use shielded signal and bias cables to minimize inductive pick-up.

General Handling: Handle the chip along the edges with a vacuum collet or with a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and should not be touched with vacuum collet, tweezers, or fingers.

Mounting

The chip is back-metallized and can be die mounted with AuSn eutectic preforms or with electrically conductive epoxy. The mounting surface should be clean and flat.

Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 deg. C and a tool temperature of 265 deg. C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 deg. C. DO NOT expose the chip to a temperature greater than 320 deg. C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for attachment.

Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer's schedule.

Wire Bonding

Ball or wedge bond with 0.025mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with a nominal stage temperature of 150 deg. C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the package or substrate. All bonds should be as short as possible <0.31mm (12 mils).