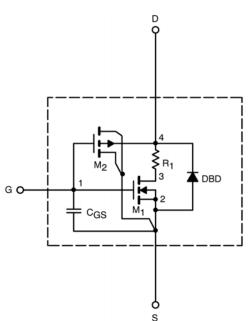


Vishay Siliconix

N-Channel 60-V (D-S) Fast Switching MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

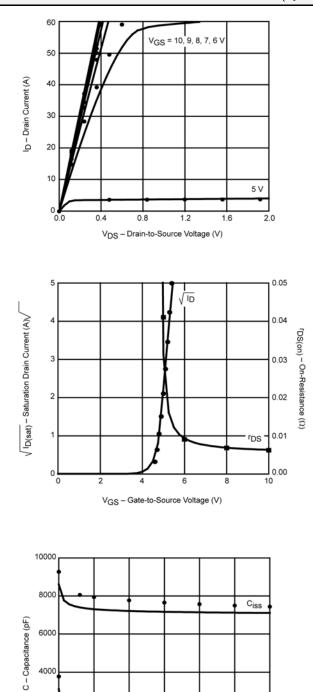
This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

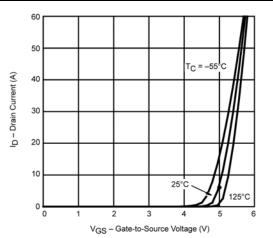
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static					
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	3.7		V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}}~\geq 5$ V, V_{GS} = 10 V	651		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I_{D} = 19.3 A	0.0063	0.007	Ω
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 19.3 A	57	51	S
Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 4.5 A, $V_{\rm GS}$ = 0 V	0.84	0.80	V
Dynamic ^b					
Total Gate Charge	Qg	V_{DS} = 30 V, V_{GS} = 10 V, I_{D} = 19.3 A	112	105	nC
Gate-Source Charge	Q _{gs}		40	40	
Gate-Drain Charge	Q _{gd}		21	21	
Turn-On Delay Time	t _{d(on)}	$\label{eq:V_DD} \begin{array}{l} V_{DD} \texttt{=} \ \texttt{30} \ \texttt{V}, \ \texttt{R}_{L} \texttt{=} \ \texttt{30} \ \Omega \\ \texttt{I}_{D} \cong \ \texttt{1} \ \texttt{A}, \ \texttt{V}_{GEN} \texttt{=} \ \texttt{10} \ \texttt{V}, \ \texttt{R}_{G} \texttt{=} \ \texttt{6} \ \Omega \end{array}$	65	45	ns
Rise Time	tr		19	15	
Turn-Off Delay Time	t _{d(off)}		82	90	
Fall Time	t _f		26	40	

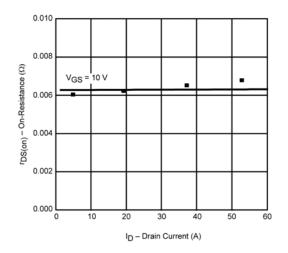
Notes

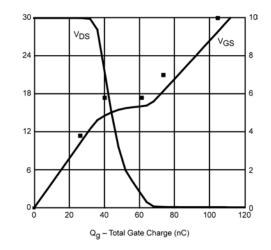
a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si7452DP


Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)


Coss


60

50

Note: Dots and squares represent measured data.

10

20

30

V_{DS} – Drain-to-Source Voltage (V)

40

2000

0

0