

MAS9271

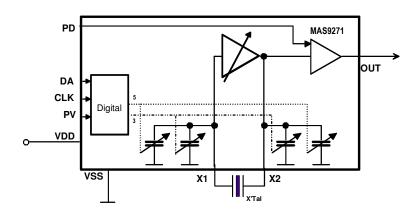
IC FOR 10.00 - 40.00 MHz PXO

- Low Power
- Wide Supply Voltage Range
- CMOS (Square Wave) Output
- Very High Level of Integration
- Electrically Trimmable
- Very Low Phase Noise
- Low Cost

DESCRIPTION

The MAS9271 is an integrated circuit well suited to make initial offset trimming of the crystal in oscillator. The trimming is done by a serial bus and the calibration information is stored in an internal PROM.

To build a Precision Crystal Oscillator (PXO) only one additional component, a crystal is needed.


FEATURES

- Very small size
- Minimum current draw
- · Wide operating temperature range
- Phase noise <-130 dBc/Hz at 1 kHz offset
- Square wave output

APPLICATIONS

- PXO for data terminals
- PXO for telecommunication applications
- PXO for computer application

BLOCK DIAGRAM

PIN DESCRIPTION

Pin Description	Symbol	x-coordinate	y-coordinate	Note
Power Supply Voltage	VDD	177	172	
Crystal Oscillator Output	X1	374	158	
Crystal/Varactor Oscillator Input	X2	817	158	
Tri State	PD	1012	158	
Serial Bus Clock Input	CLK	201	1015	
Serial Bus Data Input	DA	435	1015	
Buffer Output	OUT	665	1015	
Power Supply Ground	VSS	830	1008	
Programming Input	PV	1042	1015	

Note: Also available in AK2140 pin order.

Note: Because the substrate of the die is internally connected to VDD, the die has to be connected to VDD or left floating. Please make sure that VDD is the first pad to be bonded. Pick-and-place and all component assembly are recommended to be performed in ESD protected area.

Note: Pad coordinates measured from the left bottom corner of the chip to the center of the pads. The coordinates may vary depending on sawing width and location, however, distances between pads are accurate.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Unit	Note
Supply Voltage	V_{DD} - V_{SS}	-0.3	6.0	V	
Input Voltage	V _{IN}	V _{SS} -0.3	$V_{DD} + 0.3$	V	1)
Power Dissipation	P _{MAX}		100	mW	
Storage Temperature	T _{ST}	-55	150	°C	

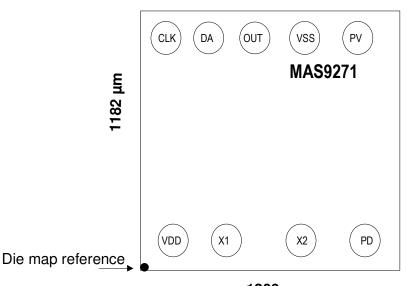
Note: Not valid for programming pin PV

RECOMMENDED OPERATION CONDITIONS

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V_{DD}		2.5	2.8	5.5	V
Supply Current	I _{cc}	Vdd = 2.8 Volt		2.3		mA
Operating Temperature	T _C		-40		+85	°C
Crystal Load Capacitance	C _L			8.0		pF

ELECTRICAL CHARACTERISTICS

(recommended operation conditions)

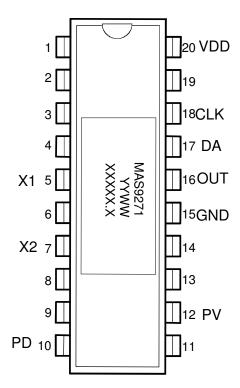

Parameter	Symbol	Min	Тур	Max	Unit	Note
Frequency Range	f _o	10.00		40.00	MHz	1)
Output Voltage (10 pF, Vdd 2.7V)	V_{out}		2.3		Vpp	
Output Voltage (10 pF, Vdd 5.0V)	V_{out}		4.5		Vpp	
Rise and Fall Time (10 - 50pF)				10	ns	
Output Symmetry		45		55	%	
Crystal Load	C _G	5.1		11.5	pF	2)
Startup Time	T _{START}		2		ms	
Negative Resistance in Maximum CDAC Load at 32 MHz	NegR	85			Ω	
Negative Resistance in Maximum CDAC Load at 40 MHz	NegR	40			Ω	
Tri State Output Buffer ON State OFF State	PD	1.6 0		VDD 0.55	V	3)

Note 1: Rs < 10 Ω crystal provides typically a maximum frequency of 40 MHz and Rs<30 Ω a maximum frequency of 32 MHz. With Rs = 50 Ω crystal the maximum frequency is typically 26 MHz.

Note 2: Crystal Load is at minimum when all CDAC bits are 0s, and at maximum when all CDAC bits are 1s

Note 3: If the Tri State Output Buffer pin is floating (i.e. PD pin is not connected), the Oscillator is in ON state.

IC OUTLINES


1200 µm

Note 1: Also available in AK2140 pin order.

Note 2: MAS9271 pads are round with 80 µm diameter at opening.

Note 3: Pins PV, CLK and DA must not be connected in PXO module end-user application.

SAMPLES IN SB20 DIL PACKAGE

Top marking: YYWW = Year, Week XXXXX.X = Lot number

ORDERING INFORMATION

Product Code	Product	Package	Comments
MAS9271A1TG00	IC FOR PXO	Tested wafers 215 μm	Die size 1200 x 1182 μm

Please contact Micro Analog Systems Oy for other wafer thickness options. Please contact Micro Analog Systems Oy for other pin order.

LOCAL DISTRIBUTOR					

MICRO ANALOG SYSTEMS OY CONTACTS

_		
Ī	Micro Analog Systems Oy	Tel. +358 9 80 521
	Kamreerintie 2, P.O. Box 51	Fax +358 9 805 3213
	FIN-02771 Espoo, FINLAND	http://www.mas-oy.com

NOTICE

Micro Analog Systems Oy reserves the right to make changes to the products contained in this data sheet in order to improve the design or performance and to supply the best possible products. Micro Analog Systems Oy assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights unless otherwise specified in this data sheet, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Micro Analog Systems Oy makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification.