

Current Transducer LF 205-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

EI	ectrical data						
I _{PN}	Primary nominal r.m.s	. current		200			Α
I _P	Primary current, measuring range			0 ± 420			Α
R _M	Measuring resistance @		$T_A =$	70°C	T _A =	= 85°0	0
			R _{M mi}	${\sf R}_{\sf M\ max}$	R _{M min}	$\mathbf{R}_{M\ ma}$	x
	with ± 12 V	$@ \pm 200 A_{max}$	0	71	0	69	Ω
		@ ± 420 A _{max}	0	14	0	12	Ω
	with ± 15 V	@ ± 200 A _{max}	0	100	23	98	Ω
		@ $\pm 420 A_{max}$	0	28	23	26	Ω
I _{SN}	Secondary nominal r.m.s. current			100	0		m A
K _N	Conversion ratio			1:2000			
V _C	Supply voltage (± 5 %)			± 12 15			V
I _c	Current consumption @ ± 15 V			17 + I _s			m A
\mathbf{V}_{d}	R.m.s. voltage for AC	isolation test, 50 Hz, 1	mn	3.5	0		kV

Accuracy - Dynamic performance data								
X _G	Overall accuracy @ I _{PN} , T _A = 25°C			%				
$oldsymbol{e}_{ extsf{ iny G}}^{ extsf{ iny G}}$	Linearity	< 0.1		%				
		Typ	Max					
I _o	Offset current @ $I_P = 0$, $T_A = 25$ °C		± 0.2	mΑ				
I _{OM}	Residual current 1) @ $I_p = 0$, after an overload of 3 x I_{pN}		± 0.1	mΑ				
I_{OT}	Thermal drift of I_0 - 40°C + 85°C	± 0.12	± 0.4	mΑ				
t _{ra}	Reaction time @ 10 % of I _{PN}	< 500		ns				
t _r	Response time $^{2)}$ @ 90 % of I_{PN}	< 1		μs				
di/dt	di/dt accurately followed	> 100		Αμs				
f	Frequency bandwidth (- 3 dB)	DC 1	00	kHz				

General data									
\mathbf{T}_{A}	Ambient operating temperature	- 40 + 85	°C						
$\mathbf{T}_{s}^{}$	Ambient storage temperature	- 40 + 90	°C						
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	33	Ω						
Ü	@ $T_{A} = 85^{\circ}C$	35	Ω						
m	Mass	78	g						
	Standards 3)	EN 50178							

 $I_{PN} = 200 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) The result of the coercive field of the magnetic circuit

2) With a di/dt of 100 A/µs

³⁾ A list of corresponding tests is available.

021125/10

Dimensions LF 205-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening Vertical position
- Fastening torque, max
- Transducer fastening Horizontal position
- Fastening torque, max

or

Fastening torque, maxPrimary through-hole

• Connection of secondary

- ± 0.2 mm
- 2 holes Ø 4.3 mm 2 M4 steel screws
- 3.2 Nm or 2.36 Lb. Ft.
- 4 holes Ø 4.3 mm
- 4 M4 steel screws
- 3.2 Nm or 2.36 Lb. Ft.
- 4 holes \varnothing 2.25 mm depth 6 mm
- 4 x PT KA25 screws long 6 mm 0.7 Nm or 0.52 Lb. Ft.
- Ø 15.5 mm
- Molex 5045-03/AG

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.