Product Bulletin OP294

GaAIAs Plastic Infrared Emitting Diode
 Types OP294, OP299

Features

- Characterized at 5 mA for battery operated systems or other low drive current systems
- Wide irradiance pattern (OP294) or narrow irradiance pattern (OP299)
- Significantly higher power output than GaAs at equivalent drive currents
- Wavelength matched to silicon's peak response
- T-1 3/4 package

Description

The OP294 and OP299 are gallium arsenide infrared emitting diodes designed for low current or power limited applications (such as battery supplies). These LEDs are similar in design to the OP290 and OP295 but use a smaller chip which increases output efficiency at low current levels by increasing current density. Light output can be maximized with continuous (d.c.) forward current up to 100 mA or with pulsed forward current operation up to 750 mA . The chip is mounted in an IR transmissive plastic package and has been designed and tested for use with OP593/598 phototransistors or similar photodetector.

[^0]
Types OP294, OP299

Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	TEST CONDITIONS
$\mathrm{E}_{\mathrm{e}(\mathrm{APT})}$	Apertured Radiant Incidence	$\begin{aligned} & \text { OP294 } \\ & \text { OP299 } \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.15 \end{aligned}$		$\begin{aligned} & 1.50 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \mathrm{mW} / \mathrm{cm}^{2} \\ & \mathrm{~mW} / \mathrm{cm}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{F}=5 \mathrm{~mA}^{(4)} \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}^{(3)} \end{aligned}$
V_{F}	Forward Voltage				1.50	V	$\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}$
I_{R}	Reverse Current				10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$
λp	Wavelength at Peak Emission			890		nm	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
B	Spectral Bandwidth Between Half Power Points			80		nm	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
$\Delta \lambda p / \Delta T$	Spectral Shift with Temperature			+0.18		$\mathrm{nm} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=$ Constant
θ_{HP}	Emission Angle at Half Power Points	$\begin{aligned} & \text { OP294 } \\ & \text { OP299 } \end{aligned}$		$\begin{aligned} & 50 \\ & 20 \end{aligned}$		Deg. Deg.	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$
tr	Output Rise Time			500		ns	$\mathrm{IF}_{(\mathrm{PK})}=100 \mathrm{~mA}$,
t_{f}	Output Fall Time			250		ns	PW = $10 \mu \mathrm{~s}$, D.C. $=10 \%$

[^0]: Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
 Reverse Voltage . 5. 0 V
 Continuous Forward Current . 100 mA
 Peak Forward Current . 750 mA
 Storage and Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
 Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec . with soldering
 iron] . $260^{\circ} \mathrm{C}^{(1)}$
 Power Dissipation
 $180 \mathrm{~mW}^{(2)}$
 Notes:
 (1) RMA flux is recommended. Duration can be extended to 10 sec . max. when flow soldering. A max. of 20 grams force may be applied to the leads when soldering.
 (2) Derate linearly $1.80 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
 (3) $\mathrm{E}_{\text {e(APT) }}$ is a measurement of the average apertured radiant energy incident upon a sensing area $0.250^{\prime \prime}(6.35 \mathrm{~mm})$ in diameter, perpendicular to and centered on the mechanical axis of the lens, and 1.429 " $\left(36.3 \mathrm{~mm}\right.$) from the measurement surface. $\mathrm{E}_{\mathrm{e}(\mathrm{APT})}$ is not necessarily uniform within the measured area.
 (4) $\mathrm{E}_{\mathrm{e}(\mathrm{APT})}$ is a measurement of the average apertured radiant energy incident upon a sensing area $0.250 "(6.35 \mathrm{~mm})$ in diameter, perpendicular to and centered on the mechanical axis of the lens, and .500 " (12.7 mm) from the measurement surface. $\mathrm{E}_{\mathrm{e}(\mathrm{APT})}$ is not necessarily uniform within the measured area.
 (5) Cathode lead is 0.070 " nominal shorter than anode lead.

