Discrete Power & Signal Technologies **July 1998** ### **FZT749** **SOT-223** ### **PNP Low Saturation Transistor** These devices are designed with high current gain and low saturation voltage with collector currents up to 3A continuous. # Absolute Maximum Ratings* T_{A = 25°C unless otherwise noted} | Symbol | Parameter | FZT749 | Units | |----------------------------------|--|-------------|-------| | V _{CEO} | Collector-Emitter Voltage | 25 | V | | V _{CBO} | Collector-Base Voltage | 35 | V | | V _{EBO} | Emitter-Base Voltage | 5 | V | | Ic | Collector Current - Continuous | 3 | А | | T _{J,} T _{stg} | Operating and Storage Junction Temperature Range | -55 to +150 | °C | $^{^{\}star}$ These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. #### NOTES: - 1) These ratings are based on a maximum junction temperature of 150°C. - 2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations. ## Thermal Characteristics T_{A = 25°C unless otherwise noted} | Symbol | Characteristic | Max | Units | |-----------------|---|--------|-------| | | | FZT749 | | | P _D | Total Device Dissipation | 2 | W | | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient | 62.5 | °C/W | ### **PNP Low Saturation Transistor** (continued) ### **Electrical Characteristics** $T_{\text{A}\,=\,25^{\circ}\text{C}\,\text{unless otherwise noted}}$ | Symbol | Parameter | Test Conditions | Min | Max | Units | |----------------------|--------------------------------------|---|-----|------|-------| | OFF CHA | RACTERISTICS | | | | | | BV _{CEO} | Collector-Emitter Breakdown Voltage | I _C = 10 mA | 25 | | V | | BV _{CBO} | Collector-Base Breakdown Voltage | I _C = 100 μA | 35 | | V | | BV _{EBO} | Emitter-Base Breakdown Voltage | I _E = 100 μA | 5 | | V | | I _{CBO} | Collector Cutoff Current | V _{CB} = 30 V | | 100 | nA | | | | $V_{CB} = 30 \text{ V}, T_A = 100^{\circ}\text{C}$ | | 10 | uA | | I _{EBO} | Emitter Cutoff Current | V _{EB} = 4V | | 100 | nA | | ON CHAF | ACTERISTICS* | | | | | | h _{FE} | DC Current Gain | I _C = 50 mA, V _{CE} = 2 V | 70 | | - | | | | I _C = 1 A, V _{CE} = 2 V | 100 | 300 | | | | | I _C = 2 A, V _{CE} = 2 V | 75 | | | | | | I _C = 6 A, V _{CE} = 2 V | 15 | | | | V _{CE(sat)} | Collector-Emitter Saturation Voltage | I _C = 1 A, I _B = 100 mA | | 300 | mV | | | | I _C = 3 A, I _B = 300 mA | | 600 | | | V _{BE(sat)} | Base-Emitter Saturation Voltage | I _C = 1 A, I _B = 100 mA | | 1.25 | V | | V _{BE(on)} | Base-Emitter On Voltage | I _C = 1 A, V _{CE} = 2 V | | 1 | V | | SMALL S | IGNAL CHARACTERISTICS | | | | | | C _{obo} | Output Capacitance | V _{CB} = 10 V, I _E = 0, f = 1MHz | | 100 | pF | | f _T | Transition Frequency | I _C = 100 mA,V _{CE} = 5 V, f=100MHz | 100 | | - | *Pulse Test: Pulse Width $\leq 300~\mu s,~Duty~Cycle \leq 2.0\%$