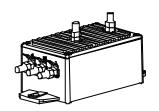


Voltage Transducer AV100 Series

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data					
Primary nominal	Primary Voltage	R.m.s. voltage	e for AC	Туре	
R.m.s or DC voltage	measuring range	isolation te	st¹)		
		(50 Hz/1min)		
V_{PN} (V)	$\mathbf{V}_{Pmax}\left(V\right)$	$\mathbf{V_d}$ (kV)			
50	± 75	3.3	A	AV 100-	50
125	± 187.5	3.3	Α	V 100-1	125
150	± 225	3.3	Α	V 100-1	150
250	± 375	3.3	Α	V 100-2	250
500	± 750	3.3	Α	V 100-5	500
750	± 1125	4.3	Α	V 100-7	750
1000	± 1500	5.5	A'	V 100-1	000
1500	± 2250	6.5	A'	V 100-1	500
$\hat{\mathbf{V}}_{\mathbf{P}}$ Not measurable of	overload 2 x	V _{Pmax} (1s/h)			V_{DC}
R _M Measuring resist	ance		$R_{_{ m Mmin}}$	R _{M max}	
	V _C =11.4V		0	47	Ω
	V _C =22.8V		0	184	Ω
I _{SN} Secondary nomin	nal r.m.s. current		50		m A
V _c Supply voltage (±	:5 %)		DC ± 1	2 24	V
I _c Current consump	otion		50+I _s		m A
Max Common mo	ode voltage		$U_{HT+} + U_{H}$		
and			$ U_{HT+} - U_{H} $	$_{T_{-}} \leq V_{PM_{A}}$	AX
V _e R.m.s. voltage fo	r partial discharge		1.1 ²⁾		k۷
extinction @ 10	pC		2.23)		k۷
A					


A	Accuracy - Dynamic performance data		
$\overline{\mathbf{X}_{G}}$	Overall Accuracy @ V _{PN} , T _A = + 25°C	± 0.7	%
X _G	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = -25 + 70^{\circ}C$	± 1.5	%
X _G	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = -40 + 85^{\circ}C$	± 1.7	%
$\mathbf{e}_{\scriptscriptstyle \perp}$	Linearity @ T _A = 25°C	< 0.1	%
I _o	Offset current @ $V_P = 0$, $T_A = 25$ °C	± 0.15	m A
t,	Response time @ 10 % of $\mathbf{V}_{\scriptscriptstyle{Pmax}}$	Between 10 ar	id 13 µs
f	Frequency bandwidth (-3dB)	DC 13	kHz

	General data		
T _A	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 50 + 90	°C
m	Mass	375	g
	Standards	EN 50155	
		EN 50124-1	
		NFF16101/2	

Notes: 1) Between primary and secondary

²⁾ For models AV 100-50 to 750

$V_{PN} = 50...1500 \text{ V}$

Features

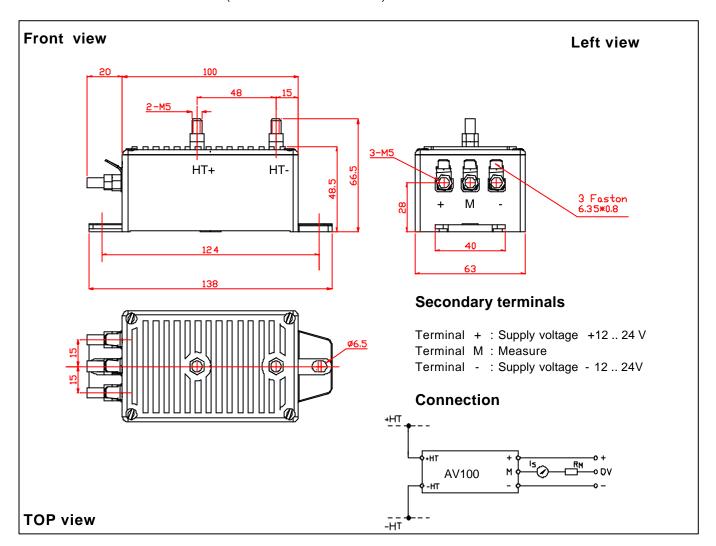
- Insulated plastic case recognized according to UL 94-V0.
- Included primary resistor

Advantages

- Low power
- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- High bandwidth
- High immunity to external interference
- · Low disturbance in common mode.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.



030523/4

³⁾ For models AV 100-1000 & AV 100-1500

Dimensions AV100 Series (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

General tolerance ± 1 mm

• Fastening 2 holes Ø 6.5 mm Distance between holes axes : 124mm

• Fastening & connection of primary 2 x M5

• Fastening & connection of secondary 3 x M5 or 3 Faston

6.35 x 0.8mm

Output connections must be made with screened cables

• Fastening torque: 2.2 Nm

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- This is a standard model. For different versions, please contact us.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.