High Voltage Ring Generator #### **Ordering Information** | Operating Voltage | Package Options | |------------------------------------|-----------------| | V _{PP1} -V _{NN1} | SOW-20 | | 325V | HV430WG | #### **Features** - ☐ 105Vrms ring signal - Output over current protection - 5.0V CMOS logic control - Logic enable/disable to save power - Adjustable deadband in single-control mode - Power-on reset - Fault output for problem detection #### **Applications** - Line access cards - ☐ Set-top/Street box ### **Absolute Maximum Ratings** | $V_{PP1} - V_{NN1}$, power supply voltage | +340V | |---|-----------------| | V _{PP1} , positive high voltage supply | +220V | | V _{PP2} , positive gate voltage supply | +220V | | V _{NN1} , negative high voltage supply | -220V | | V _{NN2} , negative gate voltage supply | -220V | | V _{DD} , logic supply | +7.5V | | Storage temperature | -65°C to +150°C | | Power dissipation | 600mW | | | | #### **General Description** The Supertex HV430 is a high voltage PWM ring generator integrated circuit. The high voltage outputs, V_{PGATE} and V_{NGATE} , are used to drive the gates of external high voltage P-channel and N-channel MOSFETs in a push-pull configuration. Over current protection is implemented for both the P-channel and N-channel MOSFETs. External sense resistors set the over-current trip point. The RESET input functions as a power-on reset when connected to an external capacitor. The FAULT output indicates an over-current condition and is cleared after 4 consecutive cycles with no overcurrent condition. A logic low on RESET or ENABLE clears the FAULT output. It is active-low and open-drain to allow wire OR'ing of multiple drivers. P_{gate} and N_{gate} are controlled independently by logic inputs P_{IN} and N_{IN} when the MODE pin is at logic high. A logic high on P_{IN} will turn on the external P-channel MOSFET. Similarly, a logic high on N_{IN} will turn on the external N-channel MOSFET. Lockout circuitry prevents the N and P switches from turning on simultaneously. A pulse width limiter restricts pulse widths to no less than 100-200ns. For applications where a single control input is desired, the MODE pin should be connected to SGND. The PWM control signal is then input to the N_{IN} pin. A user-adjustable deadband in the control logic ensures break-before-make on the outputs, thus avoiding cross conduction on the high voltage output during switching. A logic high on N_{IN} will turn the external P-Channel MOSFET on and the N-Channel off, and vice versa. The IC can be powered down by applying a logic low on the ENABLE pin, placing both external MOSFETs in the off state. ### **Electrical Characteristics** (Over operating supply voltage unless otherwise specified, T_A = -40°C to +85°C.) ### **External Supplies** | Symbol | Parameter | Min | Тур | Max | Unit | Conditions | |-------------------|------------------------------------|-----------------------|-----|------|------|--| | V _{PP1} | High voltage positive supply | 50 | | 200 | V | | | I _{PP1Q} | V _{PP} quiescent current | | 250 | 500 | μΑ | P _{IN} =N _{IN} =0V | | I _{PP1} | V _{PP} operating current | | | 2.0 | mA | No load
V _{OUTP} and V _{OUTN} switching at 100kHz | | V _{NN1} | High voltage negative supply | V _{PP1} -325 | | -50 | V | | | I _{NN1Q} | V _{NN1} quiescent current | | 250 | 500 | μΑ | $P_{IN}=N_{IN}=0V$, $R_{DB}=18k\Omega$ | | I _{NN1} | V _{NN1} operating current | | | 1.0 | mA | No load
V _{OUTP} and V _{OUTN} switching at 100kHz | | V _{DD} | Logic supply voltage | 4.50 | | 5.50 | V | | | I _{DDQ} | V _{DD} quiescent current | | 300 | 400 | μΑ | $P_{IN}=N_{IN}=0V, R_{DB}=18k\Omega$ | | I _{DD} | V _{DD} operating current | | | 1.0 | mA | $P_{IN}=N_{IN}=100kHz, R_{DB}=18k\Omega$ | #### **Internal Supplies** | Symbol | Parameter | Min | Тур | Max | Unit | Conditions | |-----------|--|----------------------|-----|----------------------|------|------------| | V_{PP2} | Positive linear regulator output voltage | V _{PP1} -16 | | V _{PP1} -10 | ٧ | | | V_{NN2} | Negative linear regulator output voltage | V_{NN1} +10 | | V _{NN1} +14 | ٧ | | #### **Positive High Voltage Output** | Symbol | Parameter | Min | Тур | Max | Unit | Conditions | |-----------------------|---|------------------------|-----------------------|------------------------|------|-------------------------------| | V _{Pgate} | Output voltage swing | V_{PP2} | | V_{PP1} | V | No load on V _{Pgate} | | R _{sourceP} | V _{Pgate} source resistance | | | 12.5 | Ω | I _{OUT} =80mA | | R _{sinkP} | V _{Pgate} sink resistance | | | 12.5 | Ω | I _{OUT} =-80mA | | t _{riseP} | V _{Pgate} rise time | | | 50 | ns | C _{load} =1.4nF | | t _{fallP} | V _{Pgate} fall time | | | 50 | ns | C _{load} =1.4nF | | t _{pwp(min)} | V _{Pgate} minimum pulse width (internally limited) | 100 | 150 | 200 | ns | | | t _{delayP} | P _{IN} to Pgate delay time | | | 300 | ns | mode=1 | | V _{Psen} | V _{Pgate} current sense voltage | V _{PP1} -0.85 | V _{PP1} -1.0 | V _{PP1} -1.15 | V | | | t _{shortP} | V _{Pgate} current sense off time | | | 150 | ns | | ## **Negative High Voltage Output** | Symbol | Parameter | Min | Тур | Max | Unit | Conditions | |-----------------------|---|------------------------|-----------------------|------------------------|------|-------------------------------| | V _{Ngate} | Output voltage swing | V _{NN2} | | V_{NN1} | V | No load on V _{Ngate} | | R _{sourceN} | V _{Ngate} source resistance | | | 15.0 | Ω | I _{OUT} =80mA | | R _{sinkN} | V _{Ngate} sink resistance | | | 15.0 | Ω | I _{OUT} =-80mA | | t _{riseN} | V _{Ngate} rise time | | | 50 | ns | C _{load} =1.0nF | | t _{fallN} | V _{Ngate} fall time | | | 50 | ns | C _{load} =1.0nF | | t _{pwn(min)} | V _{Ngate} minimum pulse width (internally limited) | 100 | 150 | 200 | ns | | | t _{delayN} | N _{IN} to V _{Ngate} delay time | | | 300 | ns | mode=1 | | V _{Nsen} | V _{Ngate} current sense voltage | V _{NN1} +0.85 | V _{NN1} +1.0 | V _{NN1} +1.15 | V | | | t _{shortN} | V _{Ngate} current sense OFF time | | | 150 | ns | | ## **Control Circuitry** | Symbol | Parameter | Min | Тур | Max | Unit | Conditions | |---------------------------------------|---|------|-----|------|---|---| | V _{IL} | Logic input low voltage | 0 | | 0.60 | V | V _{DD} =5.0V | | V _{IH} | Logic input high voltage | 2.7 | | 5.0 | ٧ | V _{DD} =5.0V | | I _{INdn} | Input pull-down current | 0.5 | 1 | 5 | μА | P _{IN} , N _{IN} , ENABLE | | R _{up} | Input pull-up resistance | 100 | 200 | 300 | kΩ | MODE | | V _{OL} | Logic output low voltage | | | 0.50 | V | V _{DD} =5.0V, I _{OUT} =-0.5mA | | V_{OH} | Logic output high voltage | 4.50 | | | V | V _{DD} =5.0V, I _{OUT} =0.5mA | | V _{RST(OFF)} | Reset voltage, device off | 3.2 | | 3.5 | V | V _{DD} =5.0V | | V _{RST(ON)} | Reset voltage, device on | 3.7 | | 4.0 | V | V _{DD} =5.0V | | $V_{RST(HYS)}$ | Reset hysteresis voltage | 0.3 | | | V | V _{DD} =5.0V | | I _{reset} | Reset pull-up current | 7 | 10 | 13 | μА | V _{RESET} =0-4.5V | | t _{RST(ON)} | RESET on delay | | | 1.0 | μS | | | t _{RST(OFF)} | RESET off delay | | | 1.0 | μS | | | t _{EN(ON)} | ENABLE on delay | 50 | 100 | 150 | μS | | | t _{EN(OFF)} | ENABLE off delay | | | 1.0 | μS | | | t _{FLT(HOLD)} | FAULT hold time | | 4 | | N _{IN} /P _{IN} cycles | ENABLE=1 | | t _{DB} | Deadband time | 35 | 50 | 70 | ns | Mode=0, Rdb=5.6k Ω | | .00 | | 105 | 140 | 175 | ns | Mode=0, Rdb=18kΩ | | t _{delay(N-P)} | N-off to P-on transistion delay | | | 300 | ns | Mode=0, Rdb<27kΩ | | t _{delay(P-N)} | P-off to N-on transistion delay | | | 300 | ns | Mode=0, Rdb<27kΩ | | $\Delta t_{\text{delay}(\text{N-P})}$ | Delay difference t _{delayN(off)} - t _{delayP(on)} | -80 | 0 | 80 | ns | Mode=1 | | $\Delta t_{\text{delay}(\text{P-N})}$ | Delay difference t _{delayP(off)} - t _{delayN(on)} | -80 | 0 | 80 | ns | Mode=1 | ### **Truth Table** | | Logic | Inputs* | | | Output | | | |-----------------|-----------------|---------|----|---------------------------|------------------------------|------------------------------|--| | N _{IN} | P _{IN} | mode | EN | RESET | External N-Channel
MOSFET | External P-Channel
MOSFET | | | L | L | Н | Н | > V _{reset(on)} | OFF | OFF | | | L | Н | Н | Н | > V _{reset(on)} | OFF | ON | | | Н | L | Н | Н | $>$ $V_{reset(on)}$ | ON | OFF | | | Н | Н | Н | Н | > V _{reset(on)} | OFF | OFF | | | Н | Х | L | Н | > V _{reset(on)} | OFF | ON | | | L | Х | L | Н | $>$ $V_{reset(on)}$ | ON | OFF | | | Х | Х | Х | L | Х | OFF | OFF | | | Х | Х | Х | Х | < V _{reset(off)} | OFF | OFF | | $^{^{\}star}$ Unused logic inputs should be connected to $V_{\text{\tiny DD}}$ or GND. # **Block Diagram and Application Circuit** Note: P_{IN} , N_{IN} , and ENABLE are internally pulled low. MODE is internally pulled high. A Reset capacitor in the range of 1-10 μ F will yield a couple-second turn-on delay. Tantalum is recommended. # **Single-Control Mode Timing** # **Dual-Control Mode Timing** ## **ENABLE Timing** ## **RESET Timing** ## **FAULT Timing** Note: N_{sense} overcurrent shown. P_{sense} operates identically. ## **Pin Description** | V | Positivo high voltago gunnly | |--------------------|---| | V _{PP1} | Positive high voltage supply. | | V _{PP2} | Positive gate voltage supply. Generated by an internal linear regulator. A 25V, 100nF capacitor should be connected between V_{PP2} and V_{PP1} . | | V_{NN1} | Negative high voltage supply. | | V _{NN2} | Negative gate voltage supply. Generated by an internal linear regulator. A 25V, 100nF capacitor should be connected between V_{NN2} and V_{NN1} . | | V_{DD} | Logic supply voltage. | | SGnd | Low voltage logic ground. | | PGnd | High voltage power ground. | | P _{IN} | Logic control input. When mode is high, logic input high turns ON the external high voltage P-channel MOSFET. Internally pulled low. | | N _{IN} | Logic control input. When mode is high, logic input high turns ON the external high voltage N-channel MOSFET. Internally pulled low. | | ENABLE | Logic enable input. Logic high enables IC. Internally pulled low. | | MODE | Logic mode input. 0=single-control; 1=dual-control. When MODE is high, N_{IN} and P_{IN} independently control N_{OUT} and P_{OUT} , respectively. When MODE is low, N_{IN} controls both outputs in a complementary manner. (See Truth Table) | | FAULT | Logic output. Fault is at logic low when either current limit sense pin, V _{Psen} or V _{Nsen} , is activated. Remains active until overcurrent condition clears or ENABLE=0 or RESET=0. | | RESET | Power-on reset. A capacitor connected between this pin and ground determines the delay time between application of V_{DD} and when the device outputs are enabled. Low leakage tantalum recommended. | | DEADBAND | A resistor between this pin and ground sets the 'break-before-make' time between output transitions. Applicable only in single-control mode. For minimum deadtime, a $5.6 \mathrm{k}\Omega$ resistor to ground should be used. For dual-input mode, tie to Vdd. | | V _{Pgate} | Gate drive for external P-channel MOSFET. | | V _{Ngate} | Gate drive for external N-channel MOSFET. | | V _{Psen} | Pulse by pulse over current sensing for P-Channel MOSFET. | | V _{Nsen} | Pulse by pulse over current sensing for N-Channel MOSFET. | ## **Pin Configuration** top view SOW 20 12/13/010