

165MHz, Rail-to-Rail Input and Output, 0.95nV/√Hz Low Noise, Op Amp Family

FEATURES

■ Low Noise Voltage: $0.95 \text{nV}/\sqrt{\text{Hz}}$ (100kHz)

■ Gain Bandwidth Product:

■ Low Distortion: -80dB at 1MHz, $R_1 = 100$ Ω

Dual LT6201 in Tiny DFN Package

■ Input Common Mode Range Includes Both Rails

Output Swings Rail-to-Rail
Low Offset Voltage: 1mV Max
Wide Supply Range: 2.5V to 12.6V

Output Current: 60mA MinSOT-23 and SO-8 Packages

■ Operating Temperature Range –40°C to 85°C

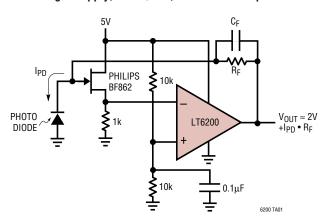
Power Shutdown, Thermal Shutdown

APPLICATIONS

- Transimpedance Amplifiers
- Low Noise Signal Processing
- Active Filters
- Rail-to-Rail Buffer Amplifiers
- Driving A/D Converters

DESCRIPTION

The LT®6200/LT6201 are single and dual ultralow noise, rail-to-rail input and output unity gain stable op amps that feature $0.95 \text{nV}/\sqrt{\text{Hz}}$ noise voltage. These amplifiers combine very low noise with a 165MHz gain bandwidth, 50V/µs slew rate and are optimized for low voltage signal conditioning systems. A shutdown pin reduces supply current during standby conditions and thermal shutdown protects the part from overload conditions.


The LT6200-5/LT6200-10 are single amplifiers optimized for higher gain applications resulting in higher gain bandwidth and slew rate. The LT6200 family maintains its performance for supplies from 2.5V to 12.6V and are specified at 3V, 5V and \pm 5V.

For compact layouts the LT6200/LT6200-5/LT6200-10 are available in the 6-lead ThinSOT $^{\text{TM}}$ and the 8-pin SO package. The dual LT6201 is available in an 8-pin SO package with standard pinouts as well as a tiny, dual fine pitch leadless package (DFN). These amplifiers can be used as plug-in replacements for many high speed op amps to improve input/output range and noise performance.

✓T, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.

TYPICAL APPLICATION

Single Supply, 1.5nV/\(\overline{Hz}\), Photodiode Amplifier

A_V = 1 V₀ = 2V_{P-P} V_S = ±2.5V HD2, R_L = 1k HD2, R_L = 1k HD2, R_L = 100Ω HD3, R_L = 1k

1M

FREQUENCY (Hz)

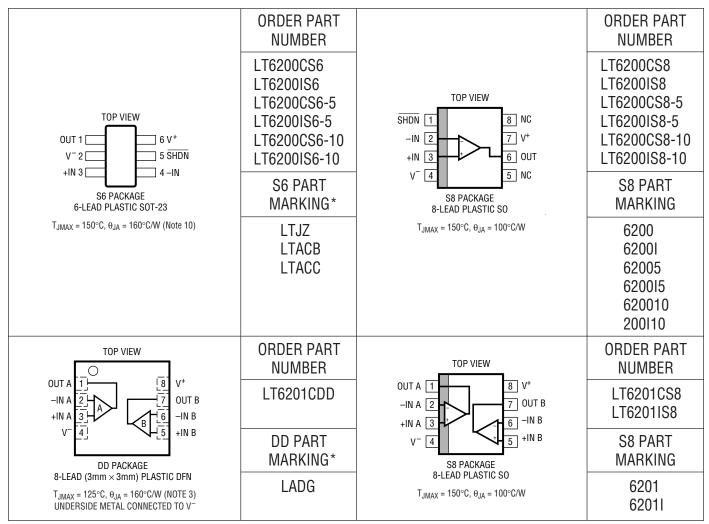
100k

Distortion vs Frequency

62001fa

10M

6200 G35



ABSOLUTE MAXIMUM RATINGS (Note 1)

Total Supply Voltage (V ⁺ to V ⁻)	12.6V
Total Supply Voltage (V+ to V-) (LT6201DD)	7V
Input Current (Note 2)	. ±40mA
Output Short-Circuit Duration (Note 3) I	ndefinite
Pin Current While Exceeding Supplies	
(Note 12)	. ±30mA
Operating Temperature Range (Note 4)40°C	to 85°C

Specified Temperature Range (Note 5)40°C to	85°C
Junction Temperature	150°C
Junction Temperature (DD Package)	125°C
Storage Temperature Range65°C to	150°C
Storage Temperature Range	
(DD Package)65°C to	125°C
Lead Temperature (Soldering, 10 sec)	300°C

PACKAGE/ORDER INFORMATION

^{*}The temperature grade is identified by a label on the shipping container. Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{CM} = V_{OUT} = half supply, <math>V_{\overline{SHDN}} = 0PEN$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage	V _S = 5V, V _{CM} =Half Supply		0.1	1	mV
		$V_S = 3V$, $V_{CM} = Half Supply$		0.9	2.5	mV
		$V_S = 5V$, $V_{CM} = V^+ \text{ to } V^-$ $V_S = 3V$, $V_{CM} = V^+ \text{ to } V^-$		0.6 1.8	2 4	mV mV
	Input Offset Voltage Match	V _{CM} = Half Supply		0.2	1.1	mV
	(Channel-to-Channel) (Note 11)	V _{CM} = V ⁻ to V ⁺		0.5	2.2	mV
I_{B}	Input Bias Current	V _{CM} = Half Supply	-40	-10	40	μA
		$V_{CM} = V^+$ $V_{CM} = V^-$	-50	8 -23	18	μA μA
Δl_B	I _B Shift	V _{CM} = V ⁻ to V ⁺		31	68	μА
	I _B Match (Channel-to-Channel) (Note 11)	$V_{CM} = V^- \text{ to } V^+$		0.3	5	μA
I _{OS}	Input Offset Current	V _{CM} = Half Supply		0.1	4	μА
		$V_{CM} = V^+$		0.02 0.4	4 5	μΑ
	Input Noise Voltage	V _{CM} = V ⁻ 0.1Hz to 10Hz		600	3	μA nV _{P-P}
	Input Noise Voltage Input Noise Voltage Density	f = 100kHz, V _S = 5V		1.1		nV/√Hz
e _n	input Noise voitage Density	$f = 10kHz, V_S = 5V$		1.5	2.4	nV/√Hz
i _n	Input Noise Current Density, Balanced Source	f = 10kHz, V _S = 5V		2.2		pA/√Hz
	Unbalanced Source	$f = 10kHz$, $V_S = 5V$		3.5		pA/√Hz
	Input Resistance	Common Mode		0.57		MΩ
		Differential Mode		2.1		kΩ
C _{IN}	Input Capacitance	Common Mode Differential Mode		3.1 4.2		pF pF
A _{VOL}	Large-Signal Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_I = 1k$ to $V_S/2$	70	120		V/mV
, vol	Largo Orginal dani	$V_S = 5V$, $V_0 = 1V$ to 4V, $R_L = 100\Omega$ to $V_S/2$	11	18		V/mV
		$V_S = 3V$, $V_0 = 0.5V$ to 2.5V, $R_L = 1k$ to $V_S/2$	17	70		V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = V^- to V^+$	65	90		dB
		$V_S = 5V$, $V_{CM} = 1.5V$ to 3.5V $V_S = 3V$, $V_{CM} = V^-$ to V^+	85 60	112 85		dB dB
	CMRR Match (Channel-to-Channel) (Note 11)	$V_S = 5V$, $V_{CM} = 1.5V$ to 3.5V	80	105		dB
PSRR	Power Supply Rejection Ratio	$V_S = 2.5V \text{ to } 10V, \text{ LT6201DD } V_S = 2.5V \text{ to } 7V$	60	68		dB
	PSRR Match (Channel-to-Channel) (Note 11)	$V_S = 2.5V \text{ to } 10V, \text{LT6201DD } V_S = 2.5V \text{ to } 7V$	65	100		dB
	Minimum Supply Voltage (Note 6)	75 2.07 10 101, 21020122 75 2.07 10 17	2.5			V
$\overline{V_{0L}}$	Output Voltage Swing LOW (Note 7)	No Load	2.0	9	50	mV
* UL	output voltage onling 2011 (Note 1)	I _{SINK} = 5mA		50	100	mV
		$V_S = 5V$, $I_{SINK} = 20mA$		150	290	mV
	Outrot Vallage Outro HIOH (Nata 7)	$V_S = 3V$, $I_{SINK} = 20$ mA		160	300	mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load I _{SOURCE} = 5mA		55 95	110 190	mV mV
		$V_S = 5V$, $I_{SOURCE} = 20$ mA		220	400	mV
		V _S = 3V, I _{SOURCE} = 20mA		240	450	mV
I_{SC}	Short-Circuit Current	$V_S = 5V$	±60	±90		mA
		$V_S = 3V$	±50	±80		mA
I _S	Supply Current per Amplifier	$V_S = 5V$ $V_S = 3V$		16.5 15	20 18	mA mA
	Disabled Supply Current per Amplifier	V _{SHDN} = 0.3V		1.3	1.8	mA
ISHDN	SHDN Pin Current	V _{SHDN} = 0.3V		200	280	μА
V _L	V _{SHDN} Pin Input Voltage LOW				0.3	V
V _H	V _{SHDN} Pin Input Voltage HIGH		V+ - 0.5			V

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{CM} = V_{OUT} = half supply, <math>V_{\overline{SHDN}} = 0PEN$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	Shutdown Output Leakage Current	V _{SHDN} = 0.3V		0.1	75	μA
t _{ON}	Turn-On Time	$V_{\overline{SHDN}}$ = 0.3V to 4.5V, R_L = 100 Ω , V_S = 5V		130		ns
t _{OFF}	Turn-Off Time	$V_{\overline{SHDN}}$ = 4.5V to 0.3V, R_L = 100 Ω , V_S = 5V		180		ns
GBW	Gain Bandwidth Product	Frequency = 1MHz, V _S = 5V LT6200-5 LT6200-10		145 750 1450		MHz MHz MHz
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 4V$	31	44		V/µs
		$V_S = 5V$, $A_V = -10$, $R_L = 1k$, $V_0 = 4V$ LT6200-5 LT6200-10		210 340		V/µs V/µs
FPBW	Full Power Bandwidth (Note 9)	$V_S = 5V$, $V_{OUT} = 3V_{P-P}$ (LT6200)	3.28	4.66		MHz
t _S	Settling Time (LT6200, LT6201)	0.1% , $V_S = 5V$, $V_{STEP} = 2V$, $A_V = -1$, $R_L = 1k$		165		ns

The ullet denotes the specifications which apply over $0^{\circ}C < T_A < 70^{\circ}C$ temperature range. $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{CM} = V_{OUT} = \text{half supply}$, $V_{\overline{SHDN}} = \text{OPEN}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	V _S = 5V, V _{CM} = Half Supply V _S = 3V, V _{CM} = Half Supply	•		0.2 1.0	1.2 2.7	mV mV
		V _S = 5V, V _{CM} = V ⁺ to V ⁻ V _S = 3V, V _{CM} = V ⁺ to V ⁻	•		0.3 1.5	3 4	mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 11)	V _{CM} = Half Supply V _{CM} = V ⁻ to V ⁺	•		0.2 0.4	1.8 2.8	mV mV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	V _{CM} = Half Supply	•		2.5	8	μV/°C
I _B	Input Bias Current	V _{CM} = Half Supply V _{CM} = V ⁺ V _{CM} = V ⁻	•	-40 -50	-10 8 -23	18	μΑ μΑ μΑ
	I _B Match (Channel-to-Channel) (Note 11)	$V_{CM} = V^- \text{ to } V^+$	•		0.5	6	<u>.</u> μΑ
Δl_B	I _B Shift	$V_{CM} = V^- \text{ to } V^+$	•		31	68	μA
I _{OS}	Input Offset Current	V _{CM} = Half Supply V _{CM} = V ⁺ V _{CM} = V ⁻	•		0.1 0.02 0.4	4 4 5	μΑ μΑ μΑ
A _{VOL}	Large-Signal Gain	V_S = 5V, V_0 = 0.5V to 4.5V, R_L = 1k to $V_S/2$ V_S = 5V, V_0 = 1.5V to 3.5V, R_L = 100 Ω to $V_S/2$ V_S = 3V, V_0 = 0.5V to 2.5V, R_L = 1k to $V_S/2$	•	46 7.5 13	80 13 22		V/mV V/mV V/mV
CMRR	Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = V^-$ to V^+ $V_S = 5V$, $V_{CM} = 1.5V$ to $3.5V$ $V_S = 3V$, $V_{CM} = V^-$ to V^+	•	64 80 60	88 105 83		dB dB dB
	CMRR Match (Channel-to-Channel) (Note 11)	V _S = 5V, V _{CM} = 1.5V to 3.5V	•	80	105		dB
PSRR	Power Supply Rejection Ratio	$V_S = 3V$ to 10V, LT6201DD $V_S = 3V$ to 7V	•	60	65		dB
	PSRR Match (Channel-to-Channel) (Note 11)	$V_S = 3V$ to 10V, LT6201DD $V_S = 3V$ to 7V	•	60	100		dB
	Minimum Supply Voltage (Note 6)		•	3			V
V _{0L}	Output Voltage Swing LOW (Note 7)	No Load	•		12 55 170 170	60 110 310 310	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load	•		65 115 260 270	120 210 440 490	mV mV mV mV

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I _{SC}	Short-Circuit Current	V _S = 5V	•	±60	±90		mA
		$V_S = 3V$	•	±45	±75		mA
I_S	Supply Current per Amplifier	V _S = 5V	•		20	23	mA
		$V_S = 3V$	•		19	22	mA
	Disabled Supply Current per Amplifier	$V_{\overline{SHDN}} = 0.3V$	•		1.35	1.8	mA
ISHDN	SHDN Pin Current	$V_{\overline{SHDN}} = 0.3V$	•		215	295	μΑ
VL	V _{SHDN} Pin Input Voltage LOW		•			0.3	V
V_{H}	V _{SHDN} Pin Input Voltage HIGH		•	V+ - 0.5			V
	Shutdown Output Leakage Current	V _{SHDN} = 0.3V	•		0.1	75	μА
t _{ON}	Turn-On Time	$V_{\overline{SHDN}} = 0.3V$ to 4.5V, $R_L = 100\Omega$, $V_S = 5V$	•		130		ns
t _{OFF}	Turn-Off Time	$V_{\overline{SHDN}}$ = 4.5V to 0.3V, R_L = 100 Ω , V_S = 5V	•		180		ns
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 4V$	•	29	42		V/µs
		$A_V = -10$, $R_1 = 1k$, $V_0 = 4V$					
		LT6200-5			190		V/µs
		LT6200-10	•		310		V/µs
FPBW	Full Power Bandwidth (Note 9)	$V_S = 5V$, $V_{OUT} = 3V_{P-P}$ (LT6200)	•	3.07	4.45		MHz

The ullet denotes the specifications which apply over $-40^{\circ}\text{C} < \text{T}_{A} < 85^{\circ}\text{C}$ temperature range. Excludes the LT6201 in the DD package (Note 3). $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{CM} = V_{OUT} = \text{half supply}$, $V_{\overline{SHDN}} = 0\text{PEN}$, unless otherwise noted. (Note 5)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Input Offset Voltage	V _S = 5V, V _{CM} = Half Supply V _S = 3V, V _{CM} = Half Supply	•		0.2 1.0	1.5 2.8	mV mV
	V _S = 5V, V _{CM} = V ⁺ to V ⁻ V _S = 3V, V _{CM} = V ⁺ to V ⁻	•		0.3 1.5	3.5 4.3	mV mV
Input Offset Voltage Match (Channel-to-Channel) (Note 11)	V _{CM} = Half Supply V _{CM} = V ⁻ to V ⁺	•		0.2 0.4	2	mV mV
Input Offset Voltage Drift (Note 8)	V _{CM} = Half Supply	•		2.5	8.0	μV/°C
Input Bias Current	V _{CM} = Half Supply V _{CM} = V ⁺ V _{CM} = V ⁻	•	-40 -50	-10 8 -23	18	μΑ μΑ μΑ
I _B Shift	V _{CM} = V ⁻ to V ⁺	•		31	68	μА
I _B Match (Channel-to-Channel) (Note 11)	V _{CM} = V ⁻ to V ⁺	•		1	9	μА
Input Offset Current	V _{CM} = Half Supply V _{CM} = V ⁺ V _{CM} = V ⁻	•		0.1 0.02 0.4	4 4 5	μΑ μΑ μΑ
Large-Signal Gain	$V_S = 5V$, $V_0 = 0.5V$ to 4.5V, $R_L = 1k$ to $V_S/2$ $V_S = 5V$, $V_0 = 1.5V$ to 3.5V, $R_L = 100\Omega$ to $V_S/2$ $V_S = 3V$, $V_0 = 0.5V$ to 2.5V, $R_L = 1k$ to $V_S/2$	•	40 7.5 11	70 13 20		V/mV V/mV V/mV
Common Mode Rejection Ratio	$V_S = 5V$, $V_{CM} = V^- \text{ to } V^+$ $V_S = 5V$, $V_{CM} = 1.5V \text{ to } 3.5V$ $V_S = 3V$, $V_{CM} = V^- \text{ to } V^+$	•	60 80 60	80 100 80		dB dB dB
CMRR Match (Channel-to-Channel) (Note 11)	V _S = 5V, V _{CM} = 1.5V to 3.5V	•	75	105		dB
Power Supply Rejection Ratio	V _S = 3V to 10V	•	60	68		dB
PSRR Match (Channel-to-Channel) (Note 11)	V _S = 3V to 10V	•	60	100		dB
Minimum Supply Voltage (Note 6)		•	3			V
Output Voltage Swing LOW (Note 7)	No Load $I_{SINK} = 5mA$ $V_S = 5V$, $I_{SINK} = 20mA$ $V_S = 3V$, $I_{SINK} = 20mA$	•		18 60 170 175	70 120 310 315	mV mV mV
	Input Offset Voltage Match (Channel-to-Channel) (Note 11) Input Offset Voltage Drift (Note 8) Input Bias Current IB Shift IB Match (Channel-to-Channel) (Note 11) Input Offset Current Large-Signal Gain Common Mode Rejection Ratio CMRR Match (Channel-to-Channel) (Note 11) Power Supply Rejection Ratio PSRR Match (Channel-to-Channel) (Note 11) Minimum Supply Voltage (Note 6)	$ \begin{array}{c} \text{Input Offset Voltage} & \begin{array}{c} V_S = 5\text{V, } V_{CM} = \text{Half Supply} \\ V_S = 3\text{V, } V_{CM} = \text{Half Supply} \\ V_S = 5\text{V, } V_{CM} = V^+ \text{ to } V^- \\ V_S = 3\text{V, } V_{CM} = V^+ \text{ to } V^- \\ V_S = 3\text{V, } V_{CM} = V^+ \text{ to } V^- \\ V_S = 3\text{V, } V_{CM} = V^+ \text{ to } V^- \\ V_{CM} = V^- \text{ to } V^+ \\ V_{CM} = V^- \text{ to } V^+ \\ V_{CM} = V^- \text{ to } V^+ \\ V_{CM} = V^- \\ V_$	Input Offset Voltage	$ \begin{array}{c} \text{Input Offset Voltage} \\ & \begin{array}{c} V_S = 5V, V_{CM} = \text{Half Supply} \\ V_S = 3V, V_{CM} = \text{Half Supply} \\ \hline \\ V_S = 5V, V_{CM} = V^+ \text{ to } V^- \\ V_S = 3V, V_{CM} = V^+ \text{ to } V^- \\ \hline \\ V_S = 3V, V_{CM} = V^+ \text{ to } V^- \\ \hline \\ V_{CM} = V^- \text{ to } V^+ \\ \hline \\ V_{CM} = V^- \text{ to } V^+ \\ \hline \\ V_{CM} = V^- \text{ to } V^+ \\ \hline \\ V_{CM} = V^- \\ \hline$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c } \hline \text{Input Offset Voltage} & V_S = 5V, V_{CM} = \text{Half Supply} \\ V_S = 3V, V_{CM} = \text{V+ to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^+ \text{to V}^- \\ V_S = 5V, V_{CM} = V^- \text{to V}^+ \\ V_S = 5V, V_S = 5V, V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = 5V, V_S = V^- \text{to V}^+ \\ V_S = V^- \text{to V}^- \\ V$

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over $-40^{\circ}\text{C} < \text{T}_{A} < 85^{\circ}\text{C}$ temperature range. Excludes the LT6201 in the DD package (Note 3). $V_S = 5V$, 0V; $V_S = 3V$, 0V; $V_{CM} = V_{OUT} = \text{half supply}$, $V_{\overline{SHDN}} = 0$ PEN, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load $I_{SOURCE} = 5mA$ $V_S = 5V, I_{SOURCE} = 20mA$ $V_S = 3V, I_{SOURCE} = 20mA$	•		65 115 270 280	120 210 450 500	mV mV mV
I _{SC}	Short-Circuit Current	$V_S = 5V$ $V_S = 3V$	•	±50 ±30	±80 ±60		mA mA
I _S	Supply Current per Amplifier Disabled Supply Current per Amplifier	$V_S = 5V$ $V_S = 3V$ $V_{\overline{SHDN}} = 0.3V$	•		22 20 1.4	25.3 23 1.9	mA mA mA
I _{SHDN}	SHDN Pin Current	$V_{\overline{SHDN}} = 0.3V$	•		220	300	μА
V_L	V _{SHDN} Pin Input Voltage LOW		•			0.3	V
V_{H}	V _{SHDN} Pin Input Voltage HIGH		•	V+ - 0.5			V
	Shutdown Output Leakage Current	V _{SHDN} = 0.3V	•		0.1	75	μА
t _{ON}	Turn-On Time	$V_{\overline{SHDN}} = 0.3V \text{ to } 4.5V, R_L = 100\Omega, V_S = 5V$	•		130		ns
t _{OFF}	Turn-Off Time	$V_{\overline{SHDN}} = 4.5V \text{ to } 0.3V, R_L = 100\Omega, V_S = 5V$	•		180		ns
SR	Slew Rate	$V_S = 5V$, $A_V = -1$, $R_L = 1k$, $V_0 = 4V$ $A_V = -10$, $R_L = 1k$, $V_0 = 4V$ LT6200-5 LT6200-10	•	23	33 160 260		V/μs V/μs V/μs
FPBW	Full Power Bandwidth (Note 9)	$V_S = 5V$, $V_{OUT} = 3V_{P-P}$ (LT6200)	•	2.44	3.5		MHz

 $T_A = 25^{\circ}C$, $V_S = \pm 5V$, $V_{CM} = V_{OUT} = 0V$, $V_{\overline{SHDN}} = 0$ PEN, unless otherwise noted. Excludes the LT6201 in the DD package (Note 3).

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V _{OS}	Input Offset Voltage	V _{CM} = Half Supply		1.4	4	mV
		$V_{CM} = V^+$		2.5	6	mV
		$V_{CM} = V^-$		2.5	6	mV
	Input Offset Voltage Match	$V_{CM} = 0V$		0.2	1.6	mV
	(Channel-to-Channel) (Note 11)	$V_{CM} = V^- \text{ to } V^+$		0.4	3.2	mV
I_B	Input Bias Current	V _{CM} = Half Supply	-40	-10		μΑ
D.		$V_{CM} = V^+$		8	18	μΑ
		$V_{CM} = V^-$	-50	-23		μΑ
ΔI_B	I _B Shift	$V_{CM} = V^- \text{ to } V^+$		31	68	μΑ
	I _B Match (Channel-to-Channel) (Note 11)	$V_{CM} = V^- \text{ to } V^+$		0.2	6	μА
I _{OS}	Input Offset Current	V _{CM} = Half Supply		1.3	7	μА
		$V_{CM} = V^+$		1	7	μA
		$V_{CM} = V^-$		3	12	μΑ
	Input Noise Voltage	0.1Hz to 10Hz		600		nV _{P-P}
en	Input Noise Voltage Density	f = 100kHz		0.95		nV/√Hz
		f = 10kHz		1.4	2.3	nV/√Hz
in	Input Noise Current Density, Balanced Source	f = 10kHz		2.2		pA/√Hz
	Unbalanced Source	f = 10kHz		3.5		pA/√Hz
	Input Resistance	Common Mode		0.57		MΩ
		Differential Mode		2.1		kΩ
C _{IN}	Input Capacitance	Common Mode		3.1		pF
		Differential Mode		4.2		pF
A _{VOL}	Large-Signal Gain	$V_0 = \pm 4.5 V, R_L = 1 k$	115	200		V/mV
		$V_0 = \pm 2V, R_L = 100$	15	26		V/mV

/ INFAD

ELECTRICAL CHARACTERISTICS noted. Excludes the LT6201 in the DD package (Note 3).

 T_A = 25°C, V_S = $\pm 5 V,~V_{CM}~=V_{OUT}$ = 0V, $V_{\overline{SHDN}}~=$ 0PEN, unless otherwise

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^- \text{ to } V^+$ $V_{CM} = -2V \text{ to } 2V$	68 75	96 100		dB dB
	CMRR Match (Channel-to-Channel) (Note 11)	$V_{CM} = -2V$ to $2V$	80	105		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.25 V \text{ to } \pm 5 V$	60	68		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$V_S = \pm 1.25 V \text{ to } \pm 5 V$	65	100		dB
V _{OL}	Output Voltage Swing LOW (Note 7)	No Load I _{SINK} = 5mA I _{SINK} = 20mA		12 55 150	50 110 290	mV mV mV
V _{OH}	Output Voltage Swing HIGH (Note 7)	No Load Source = 5mA Source = 20mA		70 110 225	130 210 420	mV mV mV
I _{SC}	Short-Circuit Current		±60	±90		mA
Is	Supply Current per Amplifier Disabled Supply Current per Amplifier	V _{SHDN} = 0.3V		20 1.6	23 2.1	mA mA
I _{SHDN}	SHDN Pin Current	$V_{\overline{SHDN}} = 0.3V$		200	280	μΑ
VL	V _{SHDN} Pin Input Voltage LOW				0.3	V
V_{H}	V _{SHDN} Pin Input Voltage HIGH		V ⁺ - 0.5			V
	Shutdown Output Leakage Current	$V_{\overline{SHDN}} = 0.3V$		0.1	75	μΑ
t _{ON}	Turn-On Time	$V_{\overline{SHDN}} = 0.3V$ to 4.5V, $R_L = 100\Omega$, $V_S = 5V$		130		ns
t _{OFF}	Turn-Off Time	$V_{\overline{SHDN}}$ = 4.5V to 0.3V, R_L = 100 Ω , V_S = 5V		180		ns
GBW	Gain Bandwidth Product	Frequency = 1MHz LT6200-5 LT6200-10	110 530 1060	165 800 1600		MHz MHz MHz
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = 4V$	35	50		V/µs
		$A_V = -10$, $R_L = 1k$, $V_0 = 4V$ LT6200-5 LT6200-10	175 315	250 450		V/µs V/µs
FPBW	Full Power Bandwidth (Note 9)	V _{OUT} = 3V _{P-P} (LT6200-10)	33	47		MHz
t_S	Settling Time (LT6200, LT6201)	0.1% , $V_{STEP} = 2V$, $A_V = -1$, $R_1 = 1k$		140		ns

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over $0^{\circ}\text{C} < \text{T}_{\text{A}} < 70^{\circ}\text{C}$ temperature range. Excludes the LT6201 in the DD package (Note 3). $V_{\text{S}} = \pm 5\text{V}$, $V_{\text{CM}} = V_{\text{OUT}} = 0\text{V}$, $V_{\overline{\text{SHDN}}} = 0\text{PEN}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage	V _{CM} = Half Supply	•		1.9	4.5	mV
		$V_{CM} = V^+$	•		3.5	7.5	mV
		$V_{CM} = V^-$	•		3.5	7.5	mV
	Input Offset Voltage Match	$V_{CM} = 0V$	•		0.2	1.8	mV
	(Channel-to-Channel) (Note 11)	V _{CM} = V ⁻ to V ⁺	•		0.4	3.4	mV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	V _{CM} = Half Supply	•		8.2	24	μV/°C
I_{B}	Input Bias Current	V _{CM} = Half Supply	•	-40	-10	10	μΑ
		$V_{CM} = V^+$ $V_{CM} = V^-$		-50	8 -23	18	μA μA
Δl_B	I _B Shift	$V_{CM} = V^- \text{ to } V^+$		30	31	68	μΑ
<u> </u>	I _B Match (Channel-to-Channel) (Note 11)	$V_{CM} = V^- \text{ to } V^+$			1	9	
Inc	Input Offset Current	V _{CM} = Half Supply			1.3	10	μA μA
I _{OS}	input onset ourrent	$V_{CW} = I_{IRII} Subbis$			1.0	10	μΑ
		$V_{CM} = V^-$	•		3.5	15	μA
A _{VOL}	Large-Signal Gain	$V_0 = \pm 4.5 \text{V}, R_L = 1 \text{k}$	•	46	80		V/mV
		$V_0 = \pm 2V, R_L = 100$	•	7.5	13.5		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^- \text{ to } V^+$	•	65	90		dB
		$V_{CM} = -2V$ to 2V	•	75	100		dB
	CMRR Match (Channel-to-Channel) (Note 11)	$V_{CM} = -2V$ to $2V$	•	75	105		dB
PSRR	Power Supply Rejection Ratio	$V_S = \pm 1.5 V \text{ to } \pm 5 V$	•	60	65		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$V_S = \pm 1.5 V \text{ to } \pm 5 V$	•	60	100		dB
V_{OL}	Output Voltage Swing LOW (Note 7)	No Load	•		16	70	mV
		I _{SINK} = 5mA	•		60	120	mV
		I _{SINK} = 20mA	•		170	310	mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load	•		85 125	150 230	mV mV
		I _{SOURCE} = 5mA I _{SOURCE} = 20mA			265	480	mV
I _{SC}	Short-Circuit Current	3001102 23.1.3.1	•	±60	±90		mA
Is	Supply Current per Amplifier		•		25	29	mA
.0	Disabled Supply Current per Amplifier	$V_{\overline{SHDN}} = 0.3V$	•		1.6	2.1	mA
ISHDN	SHDN Pin Current	V _{SHDN} = 0.3V	•		215	295	μА
V_L	V _{SHDN} Pin Input Voltage LOW		•			0.3	V
V_{H}	V _{SHDN} Pin Input Voltage HIGH		•	V ⁺ – 0.5			V
	Shutdown Output Leakage Current	V _{SHDN} = 0.3V	•		0.1	75	μА
t _{ON}	Turn-On Time	$V_{\overline{SHDN}} = 0.3V \text{ to } 4.5V, R_L = 100\Omega, V_S = 5V$	•		130		ns
t _{OFF}	Turn-Off Time	$V_{SHDN} = 4.5V \text{ to } 0.3V, R_1 = 100\Omega, V_S = 5V$	•		180		ns
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = 4V$	•	31	44		V/µs
		$A_V = -10$, $R_L = 1k$, $V_O = 4V$	П				·
		LT6200-5	•	150	215		V/µs
		LT6200-10	•	290	410		V/µs
FPBW	Full Power Bandwidth (Note 9)	$V_{OUT} = 3V_{P-P} (LT6200-10)$	•	30	43		MHz

ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over $-40^{\circ}\text{C} < \text{T}_{A} < 85^{\circ}\text{C}$ temperature range. Excludes the LT6201 in the DD package (Note 3). $V_S = \pm 5V$, $V_{CM} = V_{OUT} = 0V$, $V_{\overline{SHDN}} = 0$ PEN, unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{V_{0S}}$	Input Offset Voltage	V _{CM} = Half Supply	•		1.9	4.5	mV
		$V_{CM} = V^+$	•		3.5	7.5	mV
		V _{CM} = V ⁻	•		3.5	7.5	mV
	Input Offset Voltage Match	$V_{CM} = 0V$	•		0.2	2.0	mV
	(Channel-to-Channel) (Note 11)	$V_{CM} = V^- \text{ to } V^+$	•		0.4	3.6	mV
V _{OS} TC	Input Offset Voltage Drift (Note 8)	V _{CM} = Half Supply	•		8.2	24	μV/°C
I_{B}	Input Bias Current	V _{CM} = Half Supply	•	-40	-10	4.0	μA
		$V_{CM} = V^+$ $V_{CM} = V^-$		-50	8 -23	18	μΑ
A.I.	I _B Shift	$V_{CM} = V^- \text{ to } V^+$		-30	31	68	μΑ
Δl_{B}		∧CW = ∧ 10 ∧.					μΑ
	I _B Match (Channel-to-Channel) (Note 11)	V 11.160 1	•		4	12	μΑ
I_{OS}	Input Offset Current	V_{CM} = Half Supply $V_{CM} = V^+$			1.3 1.0	10 10	μA μA
		$V_{CM} = V_{-}$			3.5	15	μΑ
A _{VOL}	Large-Signal Gain	$V_0 = \pm 4.5V, R_1 = 1k$		46	80		V/mV
TVOL	Largo Orginal Gam	$V_0 = \pm 2V R_L = 100$	•	7.5	13.5		V/mV
CMRR	Common Mode Rejection Ratio	$V_{CM} = V^- \text{ to } V^+$	•	65	90		dB
	,	$V_{CM} = -2V$ to 2V	•	75	100		dB
	CMRR Match (Channel-to-Channel) (Note 11)	$V_{CM} = -2V$ to $2V$	•	75	105		dB
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 1.5 V \text{ to } \pm 5 V$	•	60	65		dB
	PSRR Match (Channel-to-Channel) (Note 6)	$V_S = \pm 1.5 V \text{ to } \pm 5 V$	•	60	100		dB
V_{OL}	Output Voltage Swing LOW (Note 7)	No Load	•		16	75	mV
		I _{SINK} = 5mA	•		60	125	mV
	0	I _{SINK} = 20mA	•		170	310	mV
V_{OH}	Output Voltage Swing HIGH (Note 7)	No Load			85 125	150 230	mV mV
		I _{SOURCE} = 5mA I _{SOURCE} = 20mA			265	480	mV
I _{SC}	Short-Circuit Current	Sounce 201111	•	±60	±90	100	mA
Is	Supply Current				25	29	mA
.3	Disabled Supply Current	$V_{\overline{SHDN}} = 0.3V$	•		1.6	2.1	mA
I _{SHDN}	SHDN Pin Current	$V_{\overline{SHDN}} = 0.3V$	•		215	295	μА
V_{L}	V _{SHDN} Pin Input Voltage LOW		•			0.3	V
$\overline{V_H}$	V _{SHDN} Pin Input Voltage HIGH		•	V+ - 0.5			V
	Shutdown Output Leakage Current	V _{SHDN} = 0.3V	•		0.1	75	μА
t _{ON}	Turn-On Time	$V_{\overline{SHDN}} = 0.3V$ to 4.5V, $R_L = 100\Omega$, $V_S = 5V$	•		130		ns
t _{OFF}	Turn-Off Time	$V_{\overline{SHDN}} = 4.5V$ to 0.3V, $R_L = 100\Omega$, $V_S = 5V$	•		180		ns
SR	Slew Rate	$A_V = -1$, $R_L = 1k$, $V_0 = 4V$	•	31	44		V/µs
		$A_V = -10$, $R_L = 1k$, $V_0 = 4V$					
		LT6200-5	•	125	180		V/µs
		LT6200-10	•	260	370		V/µs
FPBW	Full Power Bandwidth (Note 9)	$V_{OUT} = 3V_{P-P} (LT6200-10)$	•	27	39		MHz

Note 1: Absolute maximum ratings are those values beyond which the life of the device may be impaired.

Note 2: Inputs are protected by back-to-back diodes. If the differential input voltage exceeds 0.7V, the input current must be limited to less than 40mA.

Note 3: A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted

indefinitely. The LT6201 in the DD package is limited by power dissipation to $V_S \leq 5V$, 0V over the commercial temperature range only.

Note 4: The LT6200C/LT6200I and LT6201C/LT6201I are guaranteed functional over the temperature range of -40° C and 85° C (LT6201DD excluded).

ELECTRICAL CHARACTERISTICS

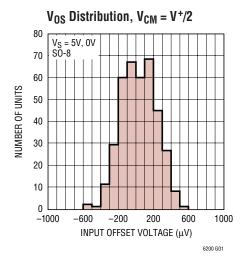
Note 5: The LT6200C/LT6201C are guaranteed to meet specified performance from 0°C to 70°C. The LT6200C/LT6201C are designed, characterized and expected to meet specified performance from -40°C to 85°C, but are not tested or QA sampled at these temperatures. The LT6200I is guaranteed to meet specified performance from -40°C to 85°C.

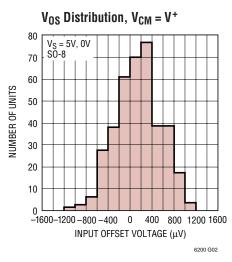
Note 6: Minimum supply voltage is guaranteed by power supply rejection ratio test.

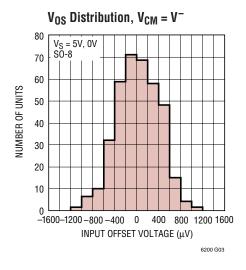
Note 7: Output voltage swings are measured between the output and power supply rails.

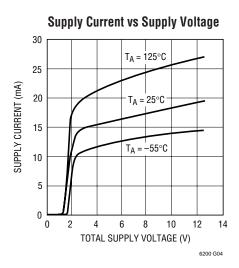
Note 8: This parameter is not 100% tested.

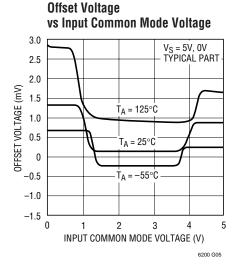
Note 9: Full-power bandwidth is calculated from the slew rate:

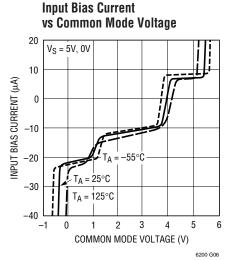

FPBW = $SR/2\pi V_P$

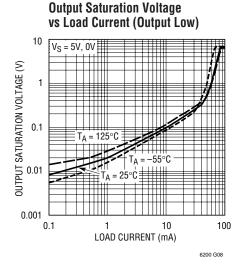

Note 10: Thermal resistance varies depending upon the amount of PC board metal attached to the V $^-$ pin of the device. θ_{JA} is specified for a certain amount of 2oz copper metal trace connecting to the V $^-$ pin as described in the thermal resistance tables in the Application Information section

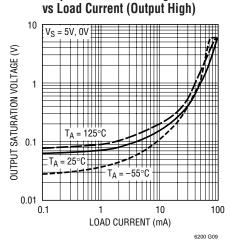

Note 11: Matching parameters on the LT6201 are the difference between the two amplifiers. CMRR and PSRR match are defined as follows: CMRR and PSRR are measured in $\mu\text{V/V}$ on the identical amplifiers. The difference is calculated in $\mu\text{V/V}$. The result is converted to dB.


Note 12: There are reverse biased ESD diodes on all inputs and outputs as shown in Figure 1. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient in nature and limited to less than 30mA, no damage to the device will occur.

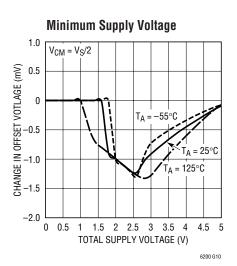

TYPICAL PERFORMANCE CHARACTERISTICS

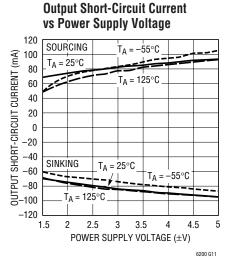


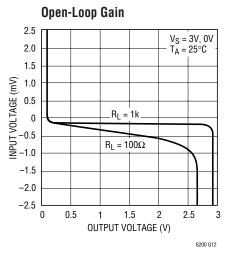


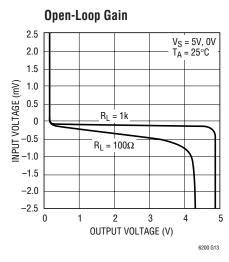


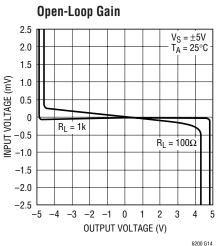
TYPICAL PERFORMANCE CHARACTERISTICS

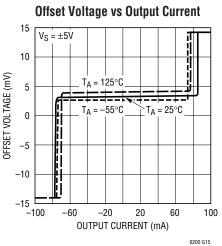

6200 G07

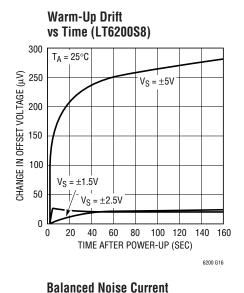

Input Bias Current vs Temperature 20 $V_S = 5V, 0V$ 15 $V_{CM} = 5V$ 10 INPUT BIAS CURRENT (µA) 5 0 -5 -10 -15 $V_{CM} = 0V$ -20 -25 -30-50 -35 -20 -5 10 25 40 55 70 TEMPERATURE (°C)

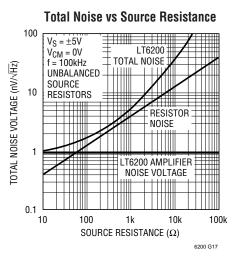


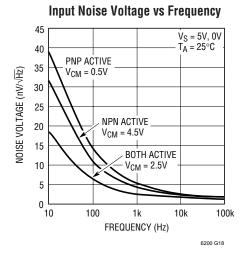



Output Saturation Voltage

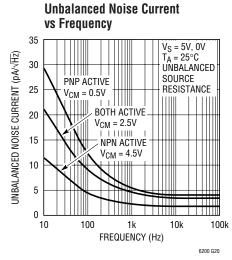


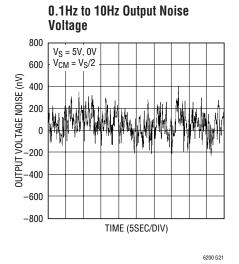


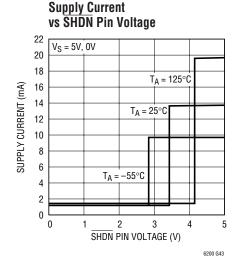




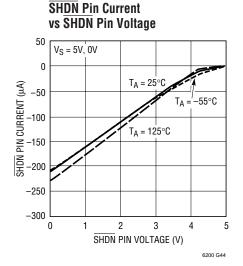
TYPICAL PERFORMANCE CHARACTERISTICS

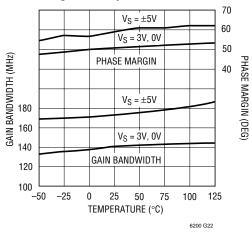


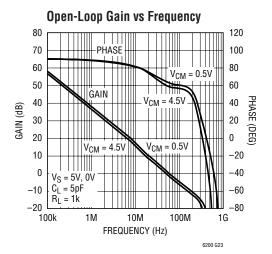




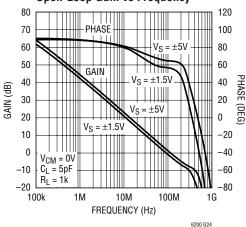
vs Frequency 25 V_S = 5V, 0V T_A = 25°C BALANCED BALANCED NOISE CURRENT (pA√HZ) 20 SOURCE PNP ACTIVE RESISTANCE $V_{CM} = 0.5V$ 15 BOTH ACTIVE V_{CM} = 2.5V 10 NPN ACTIVE $V_{CM} = 4.5V$ 0 10 100 10k 100k 1k


FREQUENCY (Hz)

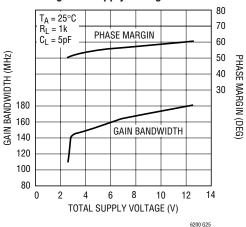

6200 G19

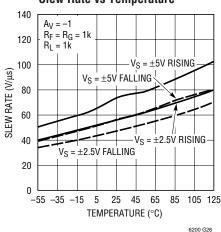


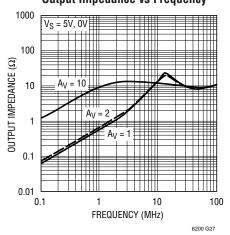
YEAD.

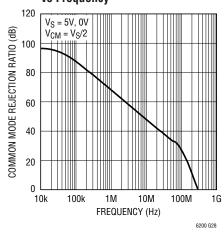

TYPICAL PERFORMANCE CHARACTERISTICS LT6200, LT6201

Gain Bandwidth and Phase Margin vs Temperature

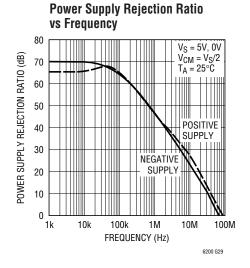


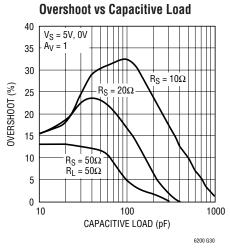

Open-Loop Gain vs Frequency

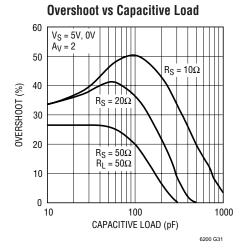

Gain Bandwidth and Phase Margin vs Supply Voltage

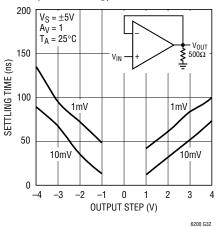

Slew Rate vs Temperature

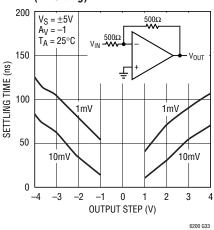
Output Impedance vs Frequency

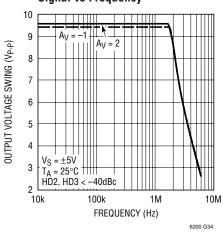


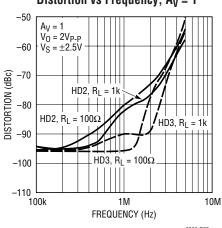

Common Mode Rejection Ratio vs Frequency

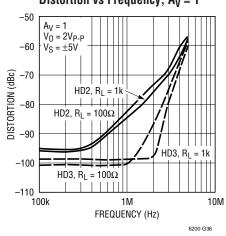


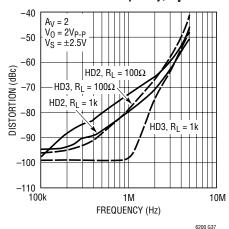

TYPICAL PERFORMANCE CHARACTERISTICS LT6200, LT6201



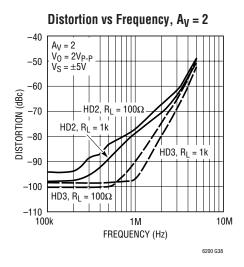

Settling Time vs Output Step (Noninverting)


Settling Time vs Output Step (Inverting)

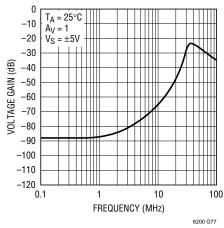

Maximum Undistorted Output Signal vs Frequency

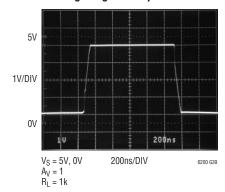

Distortion vs Frequency, $A_V = 1$

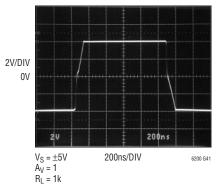
Distortion vs Frequency, $A_V = 1$

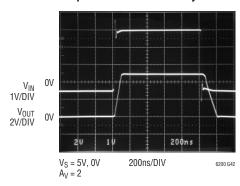


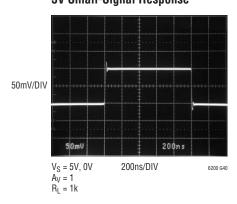
Distortion vs Frequency, $A_V = 2$

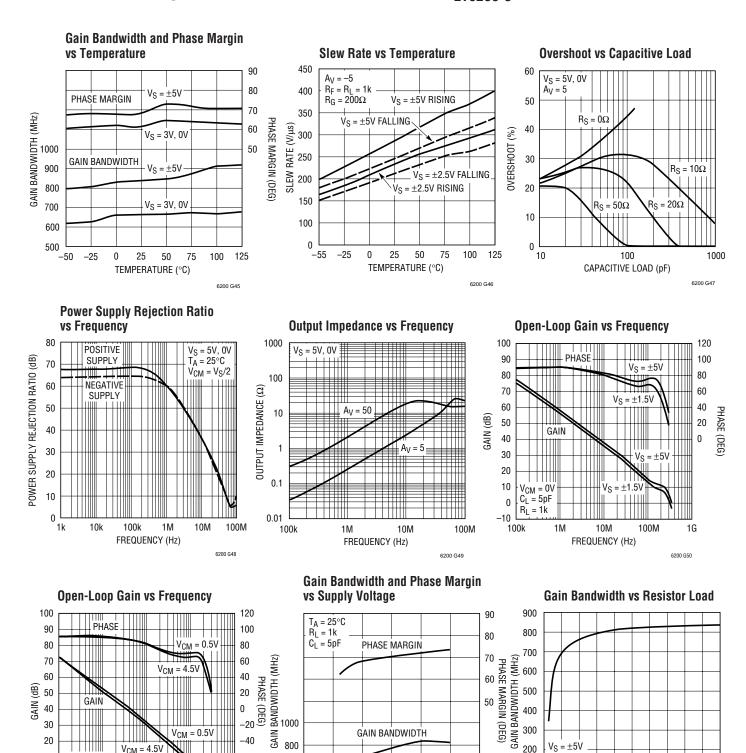



TYPICAL PERFORMANCE CHARACTERISTICS LT6200, LT6201


Channel Separation vs Frequency


5V Large-Signal Response


±5V Large-Signal Response


Output Overdrive Recovery

5V Small-Signal Response

TYPICAL PERFORMANCE CHARACTERISTICS LT6200-5

GAIN BANDWIDTH

6

TOTAL SUPPLY VOLTAGE (V)

8

10

12

4

-40

-60

-80

-100

1G

6200 G51

800

600

400

0

62001fa

G200 G53

100 200 300 400 500 600 700 800 900 1000

RESISTOR LOAD (Ω)

 $V_S = \pm 5V$

 $R_F = 10k$

R_G = 1k

 $T_A = 25^{\circ}C$

200

100

0

20

10

0

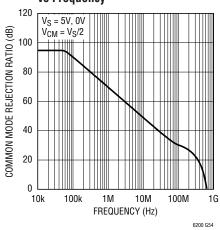
100k

-10

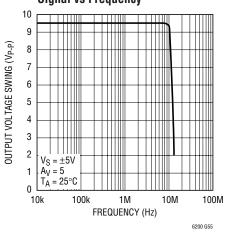
V_S = 5V, 0V

C_L = 5pF R_L = 1k

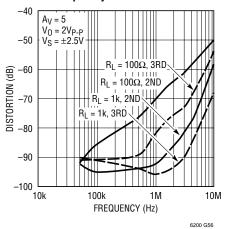
 $V_{CM} = 4.5V$

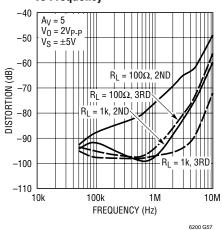

10M

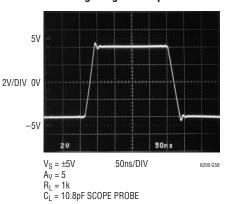
FREQUENCY (Hz)

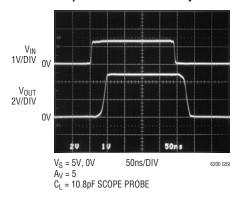

100M

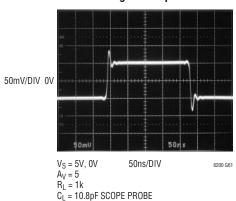
TYPICAL PERFORMANCE CHARACTERISTICS LT6200-5

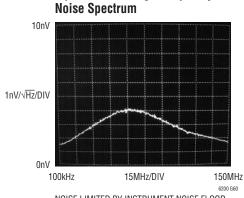

Common Mode Rejection Ratio vs Frequency


Maximum Undistorted Output Signal vs Frequency


2nd and 3rd Harmonic Distortion vs Frequency

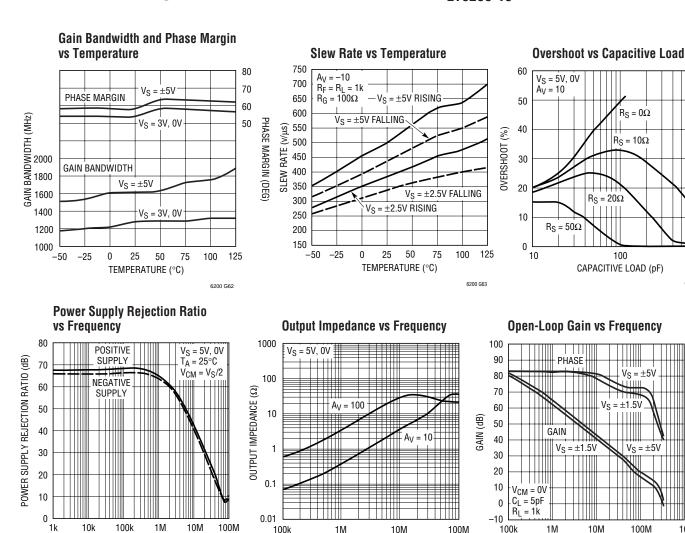

2nd and 3rd Harmonic Distortion vs Frequency

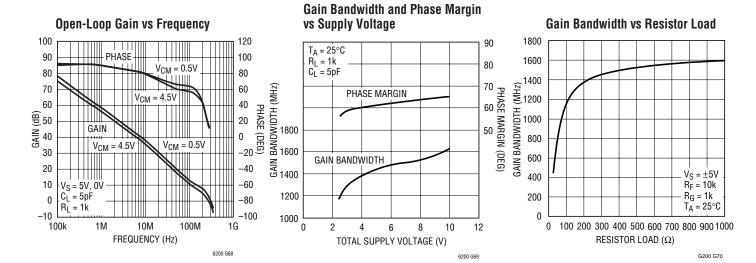

±5V Large-Signal Response


Output-Overdrive Recovery

5V Small-Signal Response

Input Referred High Frequency


NOISE LIMITED BY INSTRUMENT NOISE FLOOR



FREQUENCY (Hz)

6200 G65

TYPICAL PERFORMANCE CHARACTERISTICS LT6200-10

FREQUENCY (Hz)

6200 G66

 $R_S = 0\Omega$

1000

6200 G64

120

100

80

60

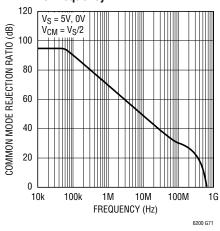
40

20

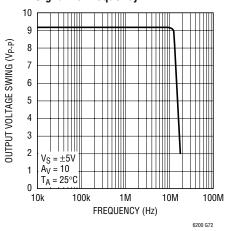
1G

6200 G67

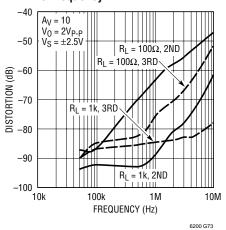
 $V_S = \pm 5V$

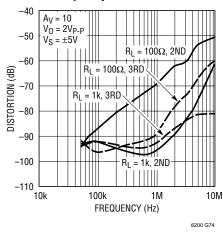

100M

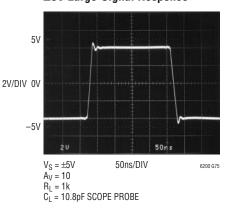
FREQUENCY (Hz)

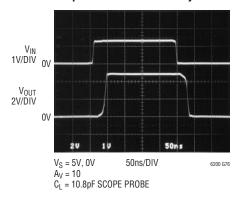

PHASE (DEG)

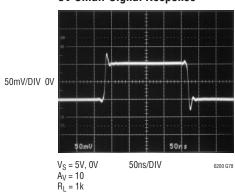
TYPICAL PERFORMANCE CHARACTERISTICS LT6200-10


Common Mode Rejection Ratio vs Frequency

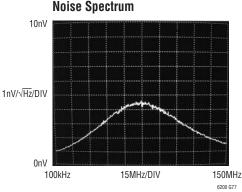

Maximum Undistorted Output Signal vs Frequency


2nd and 3rd Harmonic Distortion vs Frequency


2nd and 3rd Harmonic Distortion vs Frequency


±5V Large-Signal Response

Output-Overdrive Recovery



5V Small-Signal Response

C_L = 10.8pF SCOPE PROBE

Input Referred High Frequency Noise Spectrum

APPLICATIONS INFORMATION

Amplifier Characteristics

Figure 1 shows a simplified schematic of the LT6200 family, which has two input differential amplifiers in parallel that are biased on simultaneously when the common mode voltage is at least 1.5V from either rail. This topology allows the input stage to swing from the positive supply voltage to the negative supply voltage. As the common mode voltage swings beyond $V_{CC}-1.5V$, current source I_1 saturates and current in Q1/Q4 is zero. Feedback is maintained through the Q2/Q3 differential amplifier, but with an input g_m reduction of 1/2. A similar effect occurs with I_2 when the common mode voltage swings within 1.5V of the negative rail. The effect of the g_m reduction is a shift in the V_{OS} as I_1 or I_2 saturate.

Input bias current normally flows out of the + and – inputs. The magnitude of this current increases when the input common mode voltage is within 1.5V of the negative rail, and only Q1/Q4 are active. The polarity of this current reverses when the input common mode voltage is within 1.5V of the positive rail and only Q2/Q3 are active.

The second stage is a folded cascode and current mirror that converts the input stage differential signals to a single ended output. Capacitor C1 reduces the unity cross frequency and improves the frequency stability without degrading the gain bandwidth of the amplifier. The differential drive generator supplies current to the output transistors that swing from rail-to-rail.

The LT6200-5/LT6200-10 are decompensated op amps for higher gain applications. These amplifiers maintain identical DC specifications with the LT6200, but have a reduced Miller compensation capacitor C_M . This results in a significantly higher slew rate and gain bandwidth product.

Input Protection

There are back-to-back diodes, D1 and D2, across the + and – inputs of these amplifiers to limit the differential input voltage to ± 0.7 V. The inputs of the LT6200 family do not have internal resistors in series with the input transistors. This technique is often used to protect the input devices from overvoltage that causes excessive currents to flow. The addition of these resistors would significantly degrade the low noise voltage of these amplifiers. For instance, a 100Ω resistor in series with each input would generate 1.8nV/ $\sqrt{\text{Hz}}$ of noise, and the total amplifier noise voltage would rise from $0.95 \text{ nV}/\sqrt{\text{Hz}}$ to $2.03 \text{ nV}/\sqrt{\text{Hz}}$. Once the input differential voltage exceeds $\pm 0.7V$, steady-state current conducted though the protection diodes should be limited to ± 40 mA. This implies 25Ω of protection resistance per volt of continuous overdrive beyond ± 0.7 V. The input diodes are rugged enough to handle transient currents due to amplifier slew rate overdrive or momentary clipping without these resistors.

Figure 2 shows the input and output waveforms of the LT6200 driven into clipping while connected in a gain of

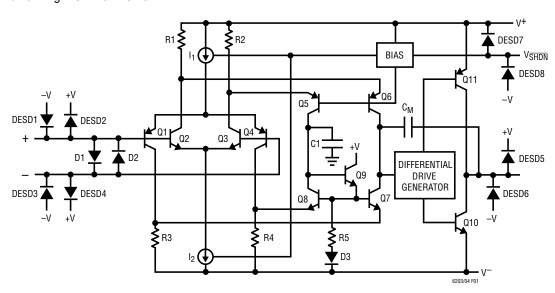


Figure 1. Simplified Schematic

LINEAR

APPLICATIONS INFORMATION

 A_V = 1. In this photo, the input signal generator is clipping at ± 35 mA, and the output transistors supply this generator current through the protection diodes.

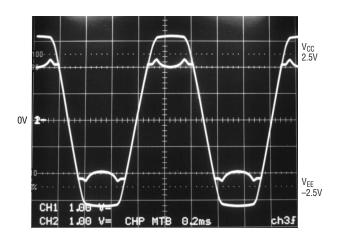


Figure 2. $V_S = \pm 2.5V$, $A_V = 1$ with Large Overdrive

ESD

The LT6200 has reverse-biased ESD protection diodes on all inputs and outputs as shown in Figure 1. If these pins are forced beyond either supply, unlimited current will flow through these diodes. If the current is transient and limited to 30mA or less, no damage to the device will occur.

Noise

The noise voltage of the LT6200 is equivalent to that of a 56Ω resistor, and for the lowest possible noise it is desirable to keep the source and feedback resistance at or below this value, i.e., $R_S + R_G//R_{FB} \leq 56\Omega$. With $R_S + R_G//R_{FB} = 56\Omega$ the total noise of the amplifier is: $e_n = \sqrt{(0.95 \text{nV})^2 + (0.95 \text{nV})^2} = 1.35 \text{nV}$. Below this resistance value, the amplifier dominates the noise, but in the resistance region between 56Ω and approximately $6k\Omega$, the noise is dominated by the resistor thermal noise. As the total resistance is further increased, beyond 6k, the noise current multiplied by the total resistance eventually dominates the noise.

For a complete discussion of amplifier noise, see the LT1028 data sheet.

Power Dissipation

The LT6200 combines high speed with large output current in a small package, so there is a need to ensure that the die's junction temperature does not exceed 150°C. The LT6200 is housed in a 6-lead TSOT-23 package. The package has the V⁻ supply pin fused to the lead frame to enhance the thermal conductance when connecting to a ground plane or a large metal trace. Metal trace and plated through-holes can be used to spread the heat generated by the device to the backside of the PC board. For example, on a 3/32" FR-4 board with 2oz copper, a total of 270 square millimeters connects to Pin 2 of the LT6200 in an TSOT-23 package will bring the thermal resistance, θ_{JA} , to about 135°C/W. Without extra metal trace beside the power line connecting to the V⁻ pin to provide a heat sink, the thermal resistance will be around 200°C/W. More information on thermal resistance with various metal areas connecting to the V⁻ pin is provided in Table 1.

Table 1. LT6200 6-Lead TSOT-23 Package

· · · · · · · · · · · · · · · · · · ·			
COPPER AREA TOPSIDE (mm ²)	BOARD AREA (mm²)	THERMAL RESISTANCE (JUNCTION-TO-AMBIENT)	
270	2500	135°C/W	
100	2500	145°C/W	
20	2500	160°C/W	
0	2500	200°C/W	

Device is mounted on topside.

Junction temperature T_J is calculated from the ambient temperature T_A and power dissipation P_D as follows:

$$T_J = T_A + (P_D \bullet \theta_{JA})$$

The power dissipation in the IC is the function of the supply voltage, output voltage and the load resistance. For a given supply voltage, the worst-case power dissipation $P_{D(MAX)}$ occurs at the maximum quiescent supply current and at the output voltage which is half of either supply voltage (or the maximum swing if it is less than 1/2 the supply voltage). $P_{D(MAX)}$ is given by:

$$P_{D(MAX)} = (V_S \cdot I_{S(MAX)}) + (V_S/2)^2/R_1$$

Example: An LT6200 in TSOT-23 mounted on a 2500 mm 2 area of PC board without any extra heat spreading plane connected to its V $^-$ pin has a thermal resistance of

APPLICATIONS INFORMATION

200°C/W, θ_{JA} . Operating on $\pm 5V$ supplies driving 50Ω loads, the worst-case power dissipation is given by:

$$P_{D(MAX)} = (10 \cdot 23mA) + (2.5)^2/50$$

= 0.23 + 0.125 = 0.355W

The maximum ambient temperature that the part is allowed to operate is:

$$T_A = T_J - (P_{D(MAX)} \cdot 200^{\circ}C/W)$$

= 150°C - (0.355W \cdot 200^{\cdot}C/W) = 79°C

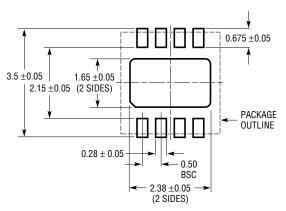
To operate the device at higher ambient temperature, connect more metal area to the V^- pin to reduce the thermal resistance of the package as indicated in Table 1.

DD Package Heat Sinking

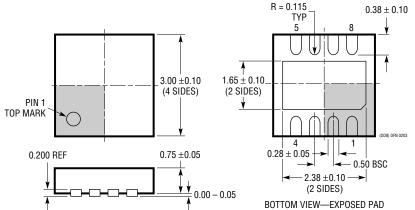
The underside of the DD package has exposed metal (4mm²) from the lead frame where the die is attached. This provides for the direct transfer of heat from the die junction to printed circuit board metal to help control the maximum operating junction temperature. The dual-in-line pin arrangement allows for extended metal beyond the ends of the package on the topside (component side) of a

PCB. Table 2 summarizes the thermal resistance from the die junction-to-ambient that can be obtained using various amounts of topside metal (2oz copper) area. On mulitlayer boards, further reductions can be obtained using additional metal on inner PCB layers connected through vias beneath the package.

Table 2. LT6200 8-Lead DD Package


COPPER AREA TOPSIDE (mm²)	THERMAL RESISTANCE (JUNCTION-TO-AMBIENT)
4	160°C/W
16	135°C/W
32	110°C/W
64	95°C/W
130	70°C/W

The LT6200 amplifier family has thermal shutdown to protect the part from excessive junction temperature. The amplifier will shut down to approximately 1.2mA supply current per amplifier if the maximum temperature is exceeded. The LT6200 will remain off until the junction temperature reduces to about 135°C, at which point the amplifier will return to normal operation.

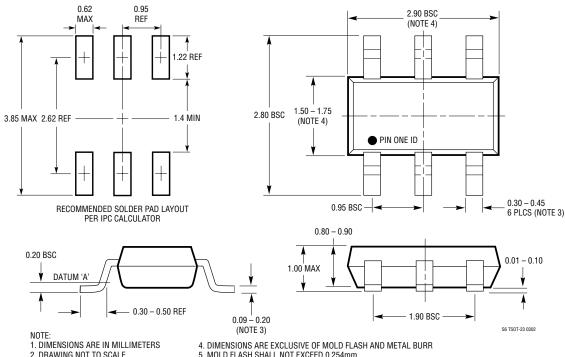

PACKAGE DESCRIPTION

$\begin{array}{c} \text{DD Package} \\ \text{8-Lead Plastic DFN (3mm} \times \text{3mm)} \end{array}$

(Reference LTC DWG # 05-08-1698)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

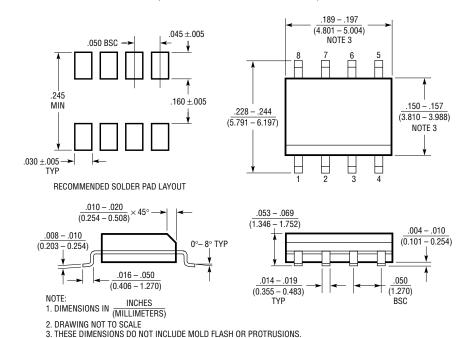
NOTE:


- 1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)
- 2. ALL DIMENSIONS ARE IN MILLIMETERS
- 3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE 4. EXPOSED PAD SHALL BE SOLDER PLATED

LINEAR

PACKAGE DESCRIPTION

S6 Package 6-Lead Plastic TSOT-23

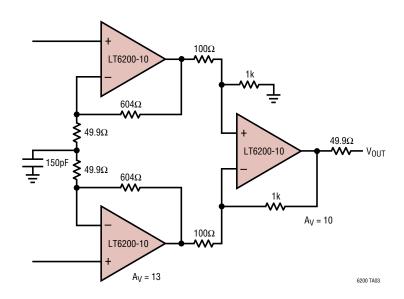

(Reference LTC DWG # 05-08-1636)

- 2. DRAWING NOT TO SCALE 3. DIMENSIONS ARE INCLUSIVE OF PLATING
- 5. MOLD FLASH SHALL NOT EXCEED 0.254mm 6. JEDEC PACKAGE REFERENCE IS MO-193

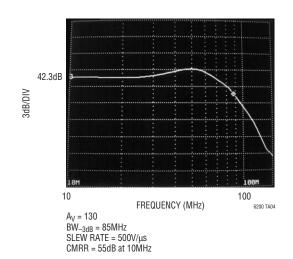
S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch)

(Reference LTC DWG # 05-08-1610)

62001fa



MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)


S08 0303

TYPICAL APPLICATION

Rail-to-Rail High Speed Low Noise Instrumentation Amplifier

Instrumentation Amplifier Frequency Response

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1028	Single, Ultra Low Noise 50MHz Op Amp	1.1nV/√Hz
LT1677	Single, Low Noise Rail-to-Rail Amplifier	3V Operation, 2.5mA, 4.5nV/√Hz, 60μV Max V _{OS}
LT1722/LT1723/LT1724	Single/Dual/Quad Low Noise Precision Op Amp	70V/μs Slew Rate, 400μV Max V _{OS} , 3.8nV/√Hz, 3.7mA
LT1806/LT1807	Single/Dual, Low Noise 325MHz Rail-to-Rail Amplifier	2.5V Operation, 550µV Max V _{OS} , 3.5nV/√Hz
LT6203	Dual, Low Noise, Low Current Rail-to-Rail Amplifier	1.9nV/\(\sqrt{Hz}\), 3mA Max, 100MHz Gain Bandwidth

LT/TP 1103 1K REV A • PRINTED IN USA © LINEAR TECHNOLOGY CORPORATION 2002