TOSHIBA Bi-CMOS INTEGRATED CIRCUIT SILICON MONOLITHIC

TB1245N

VIDEO, CHROMAAND SYNCHRONIZING SIGNALS PROCESSING IC FOR PAL / NTSC / SECAM SYSTEM COLOR TV

TB1245N that is a signal processing IC for the PAL / NTSC / SECAM color TV system integrates video, chroma and synchronizing signal processing circuits together in a 56pin shrink DIP plastic package.
TB1245N incorporates a high performance picture quality compensation circuit in the video section, an automatic PAL / NTSC / SECAM discrimination circuit in the chroma section, and an automatic $50 / 60 \mathrm{~Hz}$ discrimination circuit in the synchronizing section. Besides a crystal oscillator that internally generates $4.43 \mathrm{MHz}, 3.58 \mathrm{MHz}$ and $\mathrm{M} / \mathrm{N}-\mathrm{PAL}$ clock signals for color demodulation, there is a horizontal PLL circuit built in the IC.
The PAL / SECAM demodulation circuit which is an adjustment-free circuit incorporates a 1 H DL circuit inside for operating the base band signal processing system. Also, TB1245N makes it possible to set or control various functions through the built-in $\mathrm{I}^{2} \mathrm{C}$ bus line.

Weight: 5.55 g (Typ.)

FEATURES

- Video section
- Built-in trap filter
- Black expansion circuit
- Variable DC regeneration rate
- Y delay line
- Sharpness control by aperture control
- Y correction
- Chroma section
- Built-in 1 H Delay circuit
- PAL base band demodulation
- One crystal color demodulation circuit
- Automatic system discrimination
- Built-in band-pass filter
- Color limiter circuit
- Synchronizing deflecting section
- Built-in horizontal VCO resonator
- Adjustment-free horizontal / vertical oscillation By count-down circuit
- Double AFC circuit
- Vertical frequency automatic discrimination circuit
- Horizontal / vertical holding adjustment
- Vertical ramp output
- Vertical amplitude adjustment
- Vertical linearity / S-shaped curve adjustment
- E / W output
- Text section
- Linear RGB input
- OSD RGB input
- Cut / off-drive adjustment
- RGB primary signal output

$\begin{array}{\|l} \hline \text { PIN } \\ \text { No. } \end{array}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
1	SCP OUTPUT	Output terminal of Sand Castle Pulse. (SCP) To connect drive resistor for SCP.		Horizontal blanking
2	V-AGC	Controls pin 52 to maintain a uniform V-ramp output. Connect a current smoothing capacitor to this pin.		-
3	$\mathrm{H}-\mathrm{V} \mathrm{CC}(9 \mathrm{~V})$	V_{CC} for the DEF block (deflecting system). Connect 9 V (Typ.) to this pin.	-	-
4	Horizontal Output	Horizontal output terminal.		
5	Picture Distortion Correction	Corrects picture distortion in high voltage variation. Input AC component of high voltage variation. For inactivating the picture distortion correction function, connect 0.01 $\mu \mathrm{F}$ capacitor between this pin and GND.		4.5 V at Open
6	FBP Input	FBP input for generating horizontal AFC2 detection pulse and horizontal blanking pulse. The threshold of horizontal AFC2 detection is set $\mathrm{H} . \mathrm{V}_{\mathrm{cc}}-2 \mathrm{~V}_{\mathrm{f}}$ $\left(V_{f} \approx 0.75 V\right) .$ Confirming the power supply voltage, determine the high level of FBP.		

$\begin{array}{\|l\|} \hline \text { PIN } \\ \text { No. } \end{array}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
7	Coincident Det.	To connect filter for detecting presence of H . synchronizing signal or V . synchronizing signal.		-
8	$V_{\text {DD }}(5 \mathrm{~V}$)	$V_{D D}$ terminal of the LOGIC block. Connect 5 V (Typ.) to this pin.	-	-
9	SCL	SCL terminal of ${ }^{2} \mathrm{C}$ bus.		-
10	SDA	SDA terminal of ${ }^{2} \mathrm{C}$ bus.		-
11	Digital GND	Grounding terminal of LOGIC block.	-	-
$\begin{aligned} & 12 \\ & 13 \\ & 14 \end{aligned}$	B Output G Output R Output	R, G, B output terminals.		
15	TEXT GND	Grounding terminal of TEXT block.	-	-
16	ABCL	External unicolor brightness control terminal. Sensitivity and start point of ABL can be set through the bus.		6.4 V at Open
17	RGB-VCC $(9 \mathrm{~V})$	V_{CC} terminal of TEXT block. Connect 9 V (Typ.) to this pin.	-	-

$\begin{array}{\|l\|} \hline \text { PIN } \\ \text { No. } \end{array}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
$\begin{aligned} & 18 \\ & 19 \\ & 20 \end{aligned}$	Digital R Input Digital G Input Digital B Input	Input terminals of digital R, G, B signals. Input DC directly to these pins. OSD or TEXT signal can be input to these pins.		
21	Digital YS / YM	Selector switch of halftone / internal RGB signal / digital RGB (pins 18, 19, 20).		$\frac{\text { OSD }}{2.2 \mathrm{~V}}$ $\frac{\text { TEXT }}{2.1 \mathrm{~V}}$ $\frac{\text { H.T. }}{2} 0.7 \mathrm{~V}$ TV
22	Analog YS	Selector switch of internal RGB signal or analog RGB (pins 23, 24, 25).		Analog RGB TV
$\begin{aligned} & 23 \\ & 24 \\ & 25 \end{aligned}$	Analog R Input Analog G Input Analog B Input	Analog R, G, B input terminals. Input signal through the clamping capacitor. Standard input level : 0.5 $\mathrm{V}_{\mathrm{p}-\mathrm{p}}(100$ IRE).		
26	Color Limiter	To connect filter for detecting color limit.		-
27	FSC Output	Output terminal of FSC.		

$\begin{array}{\|l\|} \hline \text { PIN } \\ \text { No. } \end{array}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
28	EHT Input	Input terminal of EHT.		-
29	VSM Output Terminal	Power output the signal that is primary differentiated Y signal. Enable to change output amplifier and phase by the Bus.		-
30	APC Filter	To connect APC filter for chroma demodulation.		$\begin{gathered} \mathrm{DC} \\ 3.2 \mathrm{~V} \end{gathered}$
31	Y_{2} Input	Input terminal of processed Y signal. Input Y signal through clamping capacitor. Standard input level : 0.7 V_{p-p}		
32	Fsc GND	Grounding terminal of VCXO block. Insert a decoupling capacitor between this pin and pin 38 (Fsc $V_{D D}$) at the shortest distance from both.	-	-
33 34	B-Y Input R-Y Input	Input terminal of $\mathrm{B}-\mathrm{Y}$ or $\mathrm{R}-\mathrm{Y}$ signal. Input signal through a clamping capacitor.		$\quad \mathrm{DC}$ 2.5 V AC B-Y $:$ $650 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ $\mathrm{R}-\mathrm{Y}:$ $510 \mathrm{mV} \mathrm{m}_{\mathrm{p}-\mathrm{p}}$ (with input of PAL-75\% color bar signal)

$\begin{array}{\|l\|} \hline \text { PIN } \\ \text { No. } \end{array}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
$\begin{aligned} & 35 \\ & 36 \end{aligned}$	R-Y Output B-Y Output	Output terminal of demodulated $\mathrm{R}-\mathrm{Y}$ or B-Y signal. There is an LPF for removing carrier built in this pin.		
37	Y_{1} Output	Output terminal of processed Y signal. Standard output level : 0.7 V_{p-p}		
38	Fsc $V_{D D}$	V_{DD} terminal of DDS block. Insert a decoupling capacitor between this pin and pin 32 (Fsc GND) at the shortest distance from both. If decouping capacitor is inserted at a distance from the pins, it may cause spurious deterioration.	-	-
39	Black Stretch	To connect filter for controlling black expansion gain of the black expansion circuit. Black expansion gain is determined by voltage of this pin.		$\begin{gathered} \mathrm{DC} \\ 1.6 \mathrm{~V} \end{gathered}$
40	16.2 MHz X'tal	To connect 16.2 MHz crystal clock for generating sub-carrier.Lowest resonance frequency (f_{0}) of the crystal oscillation can be varied by changing DC capacity. Adjust f_{0} of the oscillation frequency with the board pattern.		$\begin{gathered} \mathrm{DC} \\ 4.1 \mathrm{~V} \end{gathered}$

$\begin{array}{\|l\|} \hline \text { PIN } \\ \text { No. } \end{array}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
41	$\mathrm{Y} / \mathrm{C} \mathrm{V}_{\text {cc }}(5 \mathrm{~V})$	V_{CC} terminal of Y / C signal processing block.	-	-
42	Chroma Input	Chroma signal input terminal. Input negative $1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sync composite video signal to this pin through a coupling capacitor.		DC 2.4 V $\mathrm{AC}: 300 \mathrm{mVp}-\mathrm{p}$ burst
43	Y / C GND	Grounding terminal of Y / C signal processing block.	-	-
44	APL	To connect filter for DC regeneration compensation.Y signal after black expansion can be monitored by opening this pin.		$\begin{gathered} \mathrm{DC} \\ 2.2 \mathrm{~V} \end{gathered}$
45	Y_{1} Input	Input terminal of Y signal. Input negative $1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sync composite video signal to this pin through a clamping capacitor.		
46	S-Demo-Adj.	To connect f_{0} adjustment filter for SECAM demodulation.		$\begin{gathered} \mathrm{DC} \\ 3.2 \mathrm{~V} \end{gathered}$
48	AFC1 Filter	To connect filter for horizontal AFC1 detection. Horizontal frequency is determined by voltage of this pin.		$\begin{gathered} \mathrm{DC} \\ 5.0 \mathrm{~V} \end{gathered}$

$\begin{array}{\|l} \hline \text { PIN } \\ \text { No. } \end{array}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
48	Sync Input	Input terminal of synchronizing separator circuit. Input signal through a clamping capacitor to this pin. Negative $1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sync.		
49	V-Ramp	To connect filter for generating V-ramp waveform.		
50	V-Sepa.	To connect filter for vertical synchronizing separation.		$\begin{gathered} \text { DC } \\ 5.9 \mathrm{~V} \end{gathered}$
51	EW FB	E/W feedback terminal		
52	EW OUT	Output terminal for driving E/W		

$\begin{aligned} & \hline \text { PIN } \\ & \text { No. } \end{aligned}$	PIN NAME	FUNCTION	INTERFACE CIRCUIT	INPUT / OUTPUT SIGNAL
53	Vertical Output	Output terminal of vertical ramp signal.		$\square \square$
54	V-NF	Input terminal of vertical NF signal.		$1 \times$
55	DEF GND	Grounding terminal of DEF (deflection) block.	-	-
56	Sync Output	Output terminal of synchronizing signal separated by sync separator circuit.Connect a pull-up resistor to this pin because it is an open-collector output type.		$\square \square$

BUS CONTROL MAP
WRITE DATA
Slave address : 88 Hex (10001000)

SUB ADDRESS	$\begin{gathered} \mathrm{D}_{7} \\ \mathrm{MSB} \end{gathered}$	D6	D_{5}	D4	D_{3}	D_{2}	D_{1}	$\begin{gathered} \mathrm{D}_{0} \\ \mathrm{LSB} \end{gathered}$		SET LSB
00	UNI-COLOR								1000	0000
01	BRIGHT								1000	0000
02	COLOR								1000	0000
03	N-COMB	TINT							0100	0000
04	PN-ID	BLK SW	SHARPNESS						0010	0000
05	S-D-Trap	R-Moni	B-Moni	Y SUB CONTRAST					1001	0000
06	RGB-CONTRAST								1000	0000
07	OSD LEVEL		0	0	0	0	0	0	0000	0000
08	YY	WPL	DRG SW	BLUE BACK		Y-DL			0000	0010
09	G DRIVE								1000	0000
0A	B DRIVE								1000	0000
OB	HORIZONTAL POSITION					AFC MODE		H-CK SW	1000	0001
0C	R CUTOFF								0000	0000
OD	G CUTOFF								0000	0000
OE	B CUTOFF								0000	0000
OF	BS SW	C-TRAP	OFST SW	C-BPF	P / N GP	CLL SW	WBLK SW	V-AGC	0000	0000
10	S-INHBIT	0	F-BW	X'tal MODE			COLOR SYSTEM		0000	0000
11	R-Y BLACK OFFSET				B-Y BLACK OFFSET				1000	1000
12	CLL LEVEL		PN CD ATT		BPF Q		BPF fo		1001	1010
13	H-STOP1	VSM PH	VSM GAIN		C-TRAP Q		C-TRAP f_{0}		1011	1010
14	BLACK STRACK POINT			DC TRAN RATE			APA-CON fo		1000	0010
15	ABL POINT			ABL GAIN			HALF TONE SW		0000	0000
16	H BLANKING PHASE			V-CD		V OUT PHASE			0000	0000
17	VERTICAL SIZE						SYNC / VP	ZOOM SW	1000	0000
18	HORIZONTAL SIZE						COINCIDENT DET		1000	0010
19	E / W PARABOLA					V-FREQ			1000	0000
1A	V-LIN CORRECTION				V-S CORRECTION				1000	1000
1B	E / W TRAPEZIUM				E / W CORNER				1000	1000
1C	MUTE MODE		H COMPENSATION			V COMPENSATION			0100	0000
1D	NOISE DET		V-BLK START PHASE						1011	1111
1E	H-STOP2	V-BLK STOP PHASE							0000	0000
1F	S-FIELD	S-CD ATT	DEMP f_{0}	S GP	V-ID SW	S KIL		f_{0}	0000	0001

READ-IN DATA

Slave address : 89 Hex (10001001)

SUB AD- DRESS	D_{7} MSB	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0} LSB
1	PORES	COLOR SYSTEM		X'tal		V-FREQ	V-STD	N-DET
2	LOCK	RGB OUT	Y1-IN	UV-IN	Y2-IN	H	V	V-GUARD

BUS CONTROL FUNCTION WRITE FUNCTION

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
UNI-COLOR	-	8 bit	$-18 \mathrm{~dB} \sim 0 \mathrm{~dB}$	80h CENTER VALUE
BRIGHT	-	8 bit	-40 IRE ~ 40 IRE	80h CENTER VALUE
COLOR	-	8 bit	$\sim 4 \mathrm{~dB}$	80h 0 dB
N COMB	1H addition selection	1 bit	OFF / ADD	00h OFF
TINT	-	7 bit	$-32^{\circ} \sim 32^{\circ}$	40h 0°
P / N ID	P/N IDENT sensitivity control	1 bit	Normal / Low (DIGITAL Comb FILTER use : -3 dB)	00h NORMAL
BLK SW	Blanking ON / OFF	1 bit	ON / OFF	00h ON
SHARPNESS	-	6 bit	$\sim 14 \mathrm{~dB}$	$20 \mathrm{~h}+3 \mathrm{~dB}$
S-D-Trap	SECAM double trap ON / OFF	1 bit	ON / OFF	01h OFF
R-Mon	TEXT-11 dB pre-amplification UV output	1 bit	Normal / Monitor (Pin 36)	OOh Normal
B-Mon	TEXT-11 dB pre-amplification UV output	1 bit	Normal / Monitor (Pin 35)	OOh Normal
Y SUB CONTRAST	-	5 bit	$-3 \mathrm{~dB} \sim+3 \mathrm{~dB}$	10h 0 dB
RGB-CONTRAST	EXT RGB UNI-COLOR control	8 bit	-18 dB~0 dB	80h CENTER VALUE
OSD LEVEL		2 bit	2.15, 2.27, 2.38, $2.50 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$	00h $2.15 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
Yy	y ON / OFF	1 bit	OFF / ON (95 IRE)	00h ON
WPL	White peak limit level	1 bit	ON (130 IRE) / OFF	00h 130 IRE
DRG SW	Drive reference axis selection	1 bit	R / G	00h R
BLUE BACK	Luminance selector switch	2 bit	IRE ; OFF, 40, 50, 60	00h OFF
Y-DL	$\begin{aligned} & \text { Y-DL TIME } \\ & (280,330,380,430,480) \end{aligned}$	3 bit	$\begin{aligned} & 280 \sim 480 \text { ns after Y IN } \\ & (101 \mathrm{H} \sim 111 \mathrm{H}: \text { Not used }) \end{aligned}$	02h 380 ns
G DRIVE GAIN	-	8 bit	$-5 \mathrm{~dB} \sim 3 \mathrm{~dB}$	80h CENTER VALUE
B DRIVE GAIN	-	8 bit	$-5 \mathrm{~dB} \sim 3 \mathrm{~dB}$	80h CENTER VALUE
HORIZONTAL POSITION	Horizontal position adjustment	5 bit	$-3 \mu \mathrm{~s} \sim+3 \mu \mathrm{~s}$	10h $0 \mu \mathrm{~s}$

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
AFC MODE	AFC1 detection sensitivity selector	2 bit	dB ; AUTO, 0, -10, -10	OOh AUTO
H-CK SW	HOUT generation clock selector	1 bit	384 fh-VCO, FSC-VCXO	01h FSC-VCXO
R CUT OFF	-	8 bit	-0.5~0.5 V	00h -0.5V
G CUT OFF	-	8 bit	-0.5~0.5 V	00h -0.5V
B CUT OFF	-	8 bit	-0.5~0.5 V	00h -0.5V
BS OFF	Black strech ON / OFF	1 bit	ON / OFF	00h ON
C-TRAP	Chroma Trap ON / OFF SW	1 bit	ON / OFF	00h ON
OFST SW	Black offset SECAM discrimination interlocking switch	1 bit	SECAM only / All systems	00h S only
C-BPF	P / N BPF ON / OFF SW	1 bit	ON / OFF	00h ON
P/N GP	PAL GATE position	1 bit	Standard / $0.5 \mu \mathrm{~s}$ delay	00h Standard
CLL SW	COLOR LIMIT ON / OFF	1 bit	ON / OFF	OOh ON
WBLK SW	WIDE V-BLK ON / OFF	1 bit	OFF / ON	00h OFF
V-AGC	V-AGC switch	1 bit	Normal / Fast	OOh Normal
S-INHBT	To detect or not to detect SECAM	1 bit	Yes / No	00h Yes
F-BW	Force B / W switch	1 bit	AUTO / Forced B / W	OOh AUTO
X'tal MODE	APC oscillation frequency selector switch	3 bit	$\begin{aligned} & 000 \text {; European system AUTO, } \\ & 001 ; 3 N \\ & 010 ; 4 \mathrm{P} \\ & 011 ; 4 \mathrm{P} \text { (N inhi bited) } \\ & 100 \text {; S.American system } \\ & \text { AUTO, } 101 \text {; 3N } \\ & 110 \text {; MP, } 111 \text {; NP } \end{aligned}$	$\begin{array}{ll} \text { European } \\ \text { system AUTO } \end{array}$
COLOR SYSTEM	Chroma system selection	2 bit	AUTO, PAL, NTSC, SECAM	OOh AUTO
R-Y BLACK OFFSET	R-Y color difference output black offset adjustment	4 bit	-24~21 mV STEP 3 mV	08h 0 mV
B-Y BLACK OFFSET	B-Y color difference output black offset adjustment	4 bit	-24~21 mV STEP 3 mV	08h 0 mV
CLL LEVEL	Color limit level adjustment	2 bit	91, 100, 108, 116\%	02h 108\%

Note: $3 \mathrm{~N} ; 3.58-\mathrm{NTSC}, 4 \mathrm{P} ; 4.43-\mathrm{PAL}, \mathrm{MP}$; M-PAL, NP ; N-PAL European system AUTO ; 4.43-PAL, 4.43-NTSC, 3.58-NTSC, SECAM S.American system AUTO ; 3.58-NTSC, M-PAL, N-PAL

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
PN CD ATT	P / N color difference amplitude adjustment	2 bit	-2~+1 dB STEP 1 dB	01h 0 dB
BPF Q	TOF Q adjustment	2 bit	1.0, 1.5, 2.0, 2.5	02h 2.0
BPF f_{0}	TOF f_{0} adjustment	2 bit	kHz ; 0, 500, 600, 700	02h 600 kHz
H-STOP1	H-OUT ON / OFF SW1	1 bit	$\begin{aligned} & \text { H-STOP2 }=1 \text { and } \\ & \text { H-STOP1 }=1 \rightarrow \text { STOP } \end{aligned}$	00h OUTPUT
VSM PHASE	VSM output phase	1 bit	$0 \mathrm{~ns},+20 \mathrm{~ns}$	00h 0 ns
VSM GAIN	VSM output gain	2 bit	$0 \mathrm{~dB}, 0 \mathrm{~dB},-6 \mathrm{~dB}$, OFF	03h OFF
C-TRAP Q	Chroma trap Q control	2 bit	1.0, 1.5, 2.0, 2.5	02h 2.0
C-TRAP F0	Chroma trap f_{0} control	2 bit	kHz ; -100, -50, 0, +50	02h 0 kHz
BLACK STRETCH POINT	Black expansion start point setting	3 bit	27~70\% IRE $\times 0.4$	05h 51.6\% IRE
DC TRAN RATE	Direct transmission compensation degree selection	3 bit	100~130\% APL	00h 100\% APL
APA-CON PEAK f_{0}	Sharpness peak frequency selection	2 bit	MHz ; 2.5, 3.1, 4.2, OFF	02h 4.2 MHz
ABL POINT	ABL detection voltage	3 bit	ABL point ; 5.9 V 6.5 V	00h 5.9 V
ABL GAIN	ABL sensitivity	3 bit	Brightness ; 0~-2 V	00h 0 V
HALF TONE SW	Halftone gain selection	2 bit	Normal + Pin control, Forced -6 dB Normal (not pin control)	OOh Normal
H BLK PHASE	Horizontal blanking end position	3 bit	0~3.5 $\mu \mathrm{s}$ step $0.5 \mu \mathrm{~s}$	00h $0 \mu \mathrm{~s}$
V-CD	Vertical count-down mode selection	2 bit	Normal / Normal / Teletext / Fast	OOh Normal
V OUTPUT PHASE	Vertical position adjustment	3 bit	0~7H STEP 1H	OOh OH
VERTICAL SIZE	Vertical amplitude adjustment	6 bit	-45~+45\%	20h CENTER VALUE
SYNC / VP	SYNC OUT / VP OUTOUTPUT Select, PIN 56	1 bit	SYNC OUT / VP OUT	OOh SYNC OUT
ZOOM SW	Vertical ZOOM	1 bit	Normal / ZOOM	OOh Normal
HORIZONTAL SIZE	Horizontal amplitude adjustment	6 bit	1.5~6.5 V	20h CENTER VALUE
COINCIDENT MODE	Discriminator output signal selection	2 bit	00 ; DSYNC 01 ; DSYNC×AFC 10 ; Field counting 11 ; VP is present.	02h Field counting
E / W PARABOLA	Parabola amplitude adjustment	5 bit	0~2.7 V	10h CENTER VALUE
V FREQ	Vertical frequency	3 bit	AUTO, $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$, No Use, Forced 312.5H, Forced 313H, Forced 262.5H, Forced 263H	OOh AUTO

ITEM	DESCRIPTION	NUMBER OF BITS	VARIABLE RANGE	PRESET VALUE
V-LINE CORRECTION	Vertical linearity correction	4 bit	-13~+13\%	08h CENTER VALUE
V S-CORRECTION	Vertical S-curve correction	4 bit	-16~+13\%	08h CENTER VALUE
E / W TRAPEZIUM	Parabola symmetry correction	4 bit	-10~+10\%	10h CENTER VALUE
E / W CORNER	Corner correction	4 bit	$-1.5 \sim+1.5 \mathrm{~V}$	10h CENTER VALUE
MUTE MODE	OFF, RGB mute, Y mute, transverse	2 bit	OFF, RGB, Y, Transverse	01h RGB
H-CONPENSATION	Horizontal EHT correction	3 bit	$0 \sim 1.0 \mathrm{~V}$	00h 0 V
V-CONPENSATION	Vertical EHT correction	3 bit	0~9\%	00h 0\%
NOISE DET	Noise detection level selection	2 bit	$0.12,0.25,0.39,0.55$	02h 0.39
V-BLK START PHASE	Vertical pre-position selection	6 bit	-64~-1H STEP 1H	3Fh -1H
H-STOP2	H-OUT ON / OFF SW2	1 bit	$\begin{aligned} & \text { H-STOP2 }=1 \text { and } \\ & \text { H-STOP1 }=1 \rightarrow \text { OUTPUT } \end{aligned}$	00h OUTPUT
V-BLK STOP PHASE	Vertical post-position selection	7 bit	0~128H STEP 1H	OOh OH
S-FIELD	SECAM color and Q selection in weak electric field	1 bit	Weak electric field control ON / OFF	00h ON
S-CD ATT	SECAM color difference amplitude adjustment	1 bit	0/-1 dB	00h 0 dB
DEMO Fo	SECAM deemphasis time constant selection	1 bit	$85 \mathrm{kHzz} / 100 \mathrm{kHz}$	00h 85 kHz
S GP	SECAM gate position selection	1 bit	Standard / $0.5 \mu \mathrm{~s}$ delay	OOh Standard
V-ID SW	SECAM V-ID ON / OFF switch	1 bit	OFF / ON	00h OFF
S KIL	SECAM KILLER sensitivity selection	1 bit	NORMAL / LOW (-3 dB)	OOh NORMAL
BELL Fo	Bell f_{0} adjustment	2 bit	-46~92 kHz STEP 46 kHz	01h 0 kHz

READ-IN FUNCTION

ITEM	DESCRIPTION	NUMBER OF BITS
PONRES	0 : POR cancel, 1 : POR ON	1 bit
COLOR SYSTEM	$\begin{aligned} & 00 \text { : B / W, } 01 \text { : PAL } \\ & 10 \text { : NTSC, } 11 \text { : SECAM } \end{aligned}$	2 bit
X'tal	$\begin{aligned} & 00: 4.433619 \mathrm{MHz} \\ & 01: 3.579545 \mathrm{MHz} \\ & 10: 3.575611 \mathrm{MHz}(\mathrm{M}-\mathrm{PAL}) \\ & 11: 3.582056 \mathrm{MHz} \text { (N-PAL) } \end{aligned}$	2 bit
V-FREQ	$0: 50 \mathrm{~Hz}, 1: 60 \mathrm{~Hz}$	1 bit
V-STD	0 : NON-STD, 1 : STD	1 bit
N-DET	0 : Low, 1 : High	1 bit
LOCK	0 : UN-LOCK, 1 : LOCK	1 bit
$\begin{aligned} & \text { RGBOUT, } \mathrm{Y}_{1}-\mathrm{IN}, \mathrm{UV}-\mathrm{IN}, \\ & \mathrm{Y}_{2}-\mathrm{IN}, \mathrm{H}, \mathrm{~V} \end{aligned}$	Self-diagnosis $0 \text { : NG, } 1 \text { : OK }$	1 bit each
V-GUARD	Detection of breaking neck 0 : Abnormal, 1 : Normal	1 bit

DATA TRANSFER FORMAT VIA I ${ }^{2} \mathrm{C}$ BUS

Start and stop condition

Bit transfer

SDA

Acknowledge

Data transmit format 1

S	Slave address	0	A		Sub address	A		Transmit data	A	P
	$7 \mathrm{bit}$			$\stackrel{1}{\mathrm{MS}}$	$8 \text { bit }$		$\stackrel{4}{\mathrm{MSB}}$	$8 \text { bit }$		

P:Stop Condition

Data transmit format 2

Data receive format

S	Slave address	1	A	Received data 01	A	Received data 02	A	P	
	$\text { SB } \quad 7 \text { bit }$			$\stackrel{1}{\text { MSB }}^{1} 8$ bit					

At the moment of the first acknowledge, the master transmitter becomes a master receiver and the slave receiver becomes a slave transmitter. This acknowledge is still generated by the slave.

The STOP condition is generated by the master.

Optional data transmit format : Automatic increment mode

S	Slave address	0	A	1	Sub address	A	Transmit data 1	\cdots	Transmit data n	A	P	P
	$\text { VISB } 7 \text { bit }$			MS	7 bit		$\sum_{\text {MSB }} 8 \text { bit }$		$\stackrel{\text { MSB }}{\text { M }} 8$ bit			

In this transmission method, data is set on automatically incremented sub-address from the specified sub-address.

Purchase of TOSHIBA I ${ }^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use these components in an $\mathrm{I}^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

DEFLECTION CORRECTION TABLE

FUNCTION	OUTPUT WAVEFORM	PICTURE CHANGE	VARIABLE RANGE
Vertical Amplitude Adjustment [VERTICAL SIZE]		Typ. Large value	-45~+45\%
Vertical Linearity Correction [V-LINEARITY]	Nos	Typ. Large value	-13~+13\%
Vertical S Correction [V-S CORRECTION]			-16~+16\%
Vertical EHT Correction [V-COMPENSATION]	N		0~9\%
Parabola Amplitude Adjustment [EW PARABOLA]			0~2.7 V
Corner Correction [EW CORNER]		Typ. Large value	-1.5~+1.5 V

FUNCTION	OUTPUT WAVEFORM	PICTURE CHANGE	VARIABLE RANGE
Horizontal EHT Correction [H-COMPENSATION]			0~+1.0 V\%
Horizontal Amplitude Adjustment [HORIZONTAL SIZE]		Typ. Large value (Solid line at left) (Dotted line at left)	$1.5 \sim 6.5 \mathrm{~V}$
Parabola Symmetry Correction [EW TRAPEZIUM]		Typ. Small value	-10~+10\%

MAXIMUM RATINGS $\left(\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	$\mathrm{V}_{\text {CCMAX }}$	12	V
Permissible Loss	P $_{\text {DMAX }}$	2190 (Note 1$)$	mW
Power Consumption Declining Degree	$1 / \mathrm{Q}_{\mathrm{ja}}$	17.52	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Input Terminal Voltage	$\mathrm{V}_{\text {in }}$	$\mathrm{GND}-0.3 \sim \mathrm{~V}_{\mathrm{CC}}+0.3$	V
Input Signal Voltage	$\mathrm{e}_{\text {in }}$	7	$\mathrm{~V}_{\mathrm{p}-\mathrm{p}}$
Operating Temperature	$\mathrm{T}_{\mathrm{opr}}$	$-20 \sim 65$	${ }^{\circ} \mathrm{C}$
Conserving Temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Note 1: In the condition that IC is actually mounted. See the diagram below.
Note 2: This IC is not proof enough against a strong E-M field by CRT which may cause function errors and / or poor characteristics.
Keeping the distance from CRT to the IC longer than 20 cm , or if cannot, placing shield metal over the IC, is recommended in an application.

Fig. Power consumption declining curve relative to temperature change

RECOMMENDED OPERATING CONDITION

CHARACTERISTIC	DESCRIPTION	MIN	TYP.	MAX	UNIT
Supply Voltage	Pin 3, pin 17	8.50	9.0	9.50	V
	Pin 8, pin 38, pin 41	4.75	5.0	5.25	
Video Input Level	100\% white, negative sync	0.9	1.0	1.1	V_{p-p}
Chroma Input Level		0.9	1.0	1.1	
Sync Input Level		0.9	1.0	2.2	
FBP Width	-	11	12	13	$\mu \mathrm{s}$
Incoming FBP Current (Note)	-	-	-	1.5	mA
H. Output Current	-	-	1.0	2.0	
RGB Output Current	-	-	1.0	2.0	V
Analog RGB Input Level	-	-	0.7	0.8	
OSD RGB Input Level	In TEXT input	0.7	1.0	1.3	
	In OSD input	-	4.2	5.0	
Incoming Current to Pin 56	Sync-out	-	0.5	1.0	mA

Note: The threshold of horizontal AFC2 detection is set $\mathrm{H} . \mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}_{\mathrm{f}}\left(\mathrm{V}_{\mathrm{f}} \approx 0.75 \mathrm{~V}\right)$. Confirming the power supply voltage, determine the high level of FBP.

ELECTRICAL CHARACTERISTIC

(Unless otherwise specified, H, RGB VCC $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$) CURRENT CONSUMPTION

PIN No.	CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	MIN	TYP.	MAX	UNIT
3	H.VCC (9V)	ICC1	-	16.0	19.0	23.5	mA
8	$\mathrm{V}_{\mathrm{DD}}(5 \mathrm{~V})$	$\mathrm{I}_{\mathrm{CC} 2}$	-	8.8	11.0	14.0	
17	RGB V ${ }_{\text {cc }}(9 \mathrm{~V})$	Icc3	-	25.0	31.5	39.0	
38	Fsc $\mathrm{V}_{\mathrm{Cc}}(5 \mathrm{~V})$	ICC4	-	1.0	1.5	2.0	
41	$\mathrm{Y} / \mathrm{C} \mathrm{V}_{\mathrm{cc}}(9 \mathrm{~V})$	ICC5	-	70	90	120	

TERMINAL VOLTAGE

PIN No.	PIN NAME	SYMBOL	TEST CIR- CUIT	MIN	TYP.	MAX	UNIT
16	ABCL	V_{16}	-	5.9	6.4	6.9	V
18	OSD R Input	V_{18}	-	-	0	0.3	V
19	OSD G Input	V_{19}	-	-	0	0.3	V
20	OSD B Input	V_{20}	-	-	0	0.3	V
21	Digital Y_{s}	V_{21}	-	-	0	0.3	V
22	Analog Y	V_{22}	-	-	0	0.3	V
23	Analog R Input	V_{23}	-	4.2	4.6	5.0	V
24	Analog G Input	V_{24}	-	4.2	4.6	5.0	V
25	Analog B Input	V_{25}	-	4.2	4.6	5.0	V
28	ETH Input	V_{28}	-	-	-	-	V
31	Y_{2} Input	V_{31}	-	1.7	2.0	2.3	V
33	B-Y Input	V_{33}	-	2.2	2.5	2.8	V
34	R-Y Input	V_{34}	-	2.2	2.5	2.8	V
35	R-Y Output	V_{35}	-	1.5	1.9	2.3	V
36	B-Y Output	V_{36}	-	1.5	1.9	2.3	V
37	Y Output	V_{37}	-	1.9	2.3	2.7	V
40	16.2 MHz X'tal Oscillation	V_{40}	-	3.6	4.1	4.6	V
42	Chroma Input	V_{42}	-	2.0	2.4	2.8	V
50	V-Sepa.	V_{50}	-	5.4	5.9	6.4	V

AC CHARACTERISTIC

Video section

CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT
Y Input Pedestal Clamping Voltage	VYclp	-	(Note Y_{1})	2.0	2.2	2.4	V
Chroma Trap Frequency	ftr 3	-	(Note Y_{2})	3.429	3.58	3.679	MHz
	ftr4	-		4.203	4.43	4.633	
Chroma Trap Attenuation $\quad(3.58 \mathrm{MHz})$	Gtr3a	-	(Note Y_{3})	20	26	52	dB
	Gtr3f	-					
(4.43 MHz)	Gtr4	-	(Note Y_{4})	20	26	52	
(SECAM)	Gtrs	-	(Note Y_{5})	18	26	52	
Yy Correction Point	yp	-	(Note Y_{6})	90	95	99	-
Yy Correction Curve	Yc	-	(Note Y_{7})	-2.6	-2.0	-1.3	dB
APL Terminal Output Impedance	Zo44	-	(Note) Y_{8}	15	20	25	k Ω
DC Transmission Compensation Amplifier Gain	Adrmax	-	(Note Y9)	0.11	0.13	0.15	times
	Adrcnt	-		0.44	0.06	0.08	
Maximum Gain of Black Expansion Amplifier	Ake	-	(Note Y_{10})	1.20	1.5	1.65	
Black Expansion Start Point	VBS9MX	-	(Note Y_{11})	65	77.5	80	IRE
	VBS9CT	-		55	62.5	70	
	VBS9MN	-		48	55.5	63	
	VBS2MX	-		35	42.5	50	
	VBS2CT	-		25	31.5	38	
	VBS2MN	-		19	25.5	32	
Black Peak Detection Period (Horizontal)	TbpH	-	(Note Y_{12})	15	16	17	$\mu \mathrm{s}$
(Vertical)	TbpV	-		33	34	35	H
Picture Quality Control Peaking Frequency	fp25	-	(Note Y_{13})	1.5	2.5	3.4	MHz
	fp31	-		1.9	3.1	4.3	
	fp42	-		3.0	4.2	5.4	
Picture Quality Control Maximum Characteristic	GS25MX	-	(Note Y_{14})	12.0	14.5	17.0	dB
	GS31MX	-		12.0	14.5	17.0	
	GS42MX	-		10.6	13.5	16.4	
Picture Quality Control Minimum Characteristic	GS25MN	-	(Note Y 15)	-22.0	-19.5	-17.0	
	GS31MN	-		-22.0	-19.5	-17.0	
	GS42MN	-		-19.5	-16.5	-13.5	
Picture Quality Control Center Characteristic	GS25CT	-	(Note Y_{16})	6.0	8.5	11.0	
	GS31CT	-		6.0	8.5	11.0	
	GS42CT	-		4.6	7.5	10.4	
Y Signal Gain	Gy	-	(Note Y 17)	-1.0	0	1.6	
Y Signal Frequency Characteristic	Gfy	-	(Note Y_{18})	-6.5	0	1.0	
Y Signal Maximum Input Range	Vyd	-	(Note Y 19)	0.9	1.2	1.5	V

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
ACC Characteristic $\quad \mathrm{f}_{0}=3.58$	$3 \mathrm{~N}_{\text {eAt }}$	-	(Note C ${ }_{1}$)	30	35	90	$m V_{p-p}$
	$3 \mathrm{~N}_{\text {F1 }}$	-		68	85	105	
	$3 \mathrm{~N}_{\text {AT }}$	-		0.9	1.0	1.1	times
	$3 \mathrm{~N}_{\text {eAE }}$	-		18	35	-	
	$3 \mathrm{~N}_{\text {F1E }}$	-		71	85	102	
	$3 \mathrm{~N}_{\text {AE }}$	-		0.9	1.0	1.1	
$\mathrm{f}_{\mathrm{o}}=4.43$	$4 \mathrm{~N}_{\text {eAT }}$	-		18	35	-	$m V_{p-p}$
	$4 \mathrm{~N}_{\mathrm{F} 1 \mathrm{~T}}$	-		71	85	102	
	$4 N_{\text {AT }}$	-		0.9	1.0	1.1	times
	$4 \mathrm{~N}_{\text {eAE }}$	-		18	35	-	
	$4 \mathrm{~N}_{\text {F1E }}$	-		71	85	102	
	$4 \mathrm{~N}_{\text {AE }}$	-		0.9	1.0	1.1	
Band Pass Filter Characteristic $\mathrm{f}_{0}=3.58$	$3 \mathrm{Nfo}_{0}$	-	$\left(\right.$ Note $\left.\mathrm{C}_{2}\right)$	3.43	3.579	3.73	MHz
	3Nfo500	-		3.93	4.079	4.23	
	$3 \mathrm{Nfo}_{600}$	-		4.03	4.179	4.33	
	3Nfo700	-		4.13	4.279	4.43	
$\mathrm{f}_{\mathrm{o}}=4.43$	$4 \mathrm{Nfo}_{0}$	-		4.28	4.433	4.58	
	4Nfo500	-		4.78	4.933	4.58	
	4Nfo600	-		4.88	5.033	5.18	
	4Nfo700	-		4.98	5.133	5.28	
Band Pass Filter, -3 dB Band Characteristic$f_{o}=3.58$	fo_{0}	-	(Note C3)	1.64	1.79	1.94	
	fo500	-					
	fo600	-					
	fo700	-					
$\mathrm{f}_{\mathrm{o}}=4.43$	foo	-		2.07	2.22	2.37	
	fo500	-					
	f0600	-					
	fo700	-					
Band Pass Filter, Q Characteristic Check$f_{0}=3.58$	Q_{1}	-	(Note C4)	-	3.58	-	
	$\mathrm{Q}_{1.5}$	-		-	2.39	-	
	$\mathrm{Q}_{2.0}$	-		1.64	1.79	1.94	
	$\mathrm{Q}_{2.5}$	-		-	1.43	-	
$\mathrm{f}_{\mathrm{o}}=4.43$	Q1	-		-	4.43	-	
	$\mathrm{Q}_{1.5}$	-		-	2.95	-	
	$\mathrm{Q}_{2.0}$	-		2.07	2.22	2.37	
	$\mathrm{Q}_{2.5}$	-		-	1.77	-	

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITION	MIN	TYP．	MAX	UNIT
$1 / 2 \mathrm{f}_{\mathrm{c}}$ Trap Characteristic $\quad \mathrm{f}_{\mathrm{O}}=3.58$	foo	－	（Note C5）	1.45	1.60	1.75	MHz
	fo500	－		1.70	1.85	2.00	
	f0600	－		1.75	1.90	2.06	
	fo700	－		1.80	1.95	2.10	
$\mathrm{f}_{\mathrm{o}}=4.43$	fo_{0}	－		1.85	2.00	2.15	
	fo 500	－		2.00	2.15	2.30	
	f0600	－		2.05	2.20	2.35	
	fo 700	－		2.10	2.25	2.40	
Tint Control Range$\left(\mathrm{f}_{\mathrm{o}}=600 \mathrm{kHz}\right)$	3NA日1	－	（Note C6）	35.0	45.0	55.0	。
	$3 \mathrm{~N} \Delta \theta 2$	－		－55．0	－45．0	－35．0	
	$4 \mathrm{~N} \Delta \theta 1$	－		35.0	45.0	55.0	
	4N $\Delta \theta 2$	－					
Tint Control Variable Range$\left(\mathrm{f}_{\mathrm{o}}=600 \mathrm{kHz}\right)$	$3 \mathrm{~N} \triangle \theta \mathrm{~T}$	－	（Note C7）	70.0	90.0	110.0	
	$4 \mathrm{~N} \Delta \theta \mathrm{~T}$	－					
Tint Control Characteristic	3 T TTin	－	（Note C8）	39	40	47	bit
	3E日Tin	－					
	$3 \mathrm{~N} \Delta$ Tin	－		73	80	87	Step
	4TөTin	－		39	40	47	bit
	4EөTin	－					
	$4 \mathrm{~N} \Delta$ Tin	－		73	80	87	Step
APC Lead－In Range \quad（Lead－In Range）	4.433 PH	－	（Note C9）	350	500	1500	Hz
	4．433PL	－		－350	－500	－1500	
	3．579PH	－		350	500	1700	
	3．579PL	－		－350	－500	－1700	
（Variable Range）	4.433 HH	－		400	500	1100	
	4.433 HL	－		－400	－500	－1100	
	3.579 HH	－		400	500	1100	
	3.579 HL	－		－400	－500	－1100	
APC Control Sensitivity	3.5883	－	（Note C10）	1.50	2.2	2.90	－
	$4.43 \beta 3$	－		1.70	2.4	3.10	
	M－PALßM	－		1.50	2.2	2.90	
	N－PAL β N	－					

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP．	MAX	UNIT
Killer Operation Input Level	3N－VTK1	－	（Note C_{11} ）	1.8	2.5	3.2	$m V_{p-p}$
	3N－VTC1	－		2.2	3.2	4.0	
	3N－VTK2	－		2.5	3.6	4.5	
	3N－VTC2	－		3.2	4.5	5.6	
	4N－VTK1	－		1.8	2.5	3.2	
	4N－VTC1	－		2.2	3.2	4.0	
	4N－VTK2	－		2.5	3.6	4.5	
	4N－VTC2	－		3.2	4.5	5.6	
	4P－VTK1	－		1.8	2.5	3.2	
	4P－VTC1	－		2.2	3.2	4.0	
	4P－VTK2	－		2.5	3.6	4.5	
	4P－VTC2	－		3.2	4.5	5.6	
	MP－VTK1	－		1.8	2.5	3.2	
	MP－VTC1	－		2.2	3.2	4.0	
	MP－VTK2	－		2.5	3.6	4.5	
	MP－VTC2	－		3.2	4.5	5.6	
	NP－VTK1	－		1.8	2.5	3.2	
	NP－VTC1	－		2.2	3.2	4.0	
	NP－VTK2	－		2.5	3.6	4.5	
	NP－VTC2	－		3.2	4.5	5.6	
Color Difference Output （Rainbow Color Bar）	3NeB－Y	－	（Note C_{12} ）	320	380	460	
	3NeR－Y	－		240	290	350	
	4NeB－Y	－		320	380	460	
	4NeR－Y	－		240	290	350	
	4PeB－Y	－		360	430	520	
	4PeR－Y	－		200	240	290	
（75\％Color Bar）	4Peb－y	－		540	650	780	
	4Per－y	－		430	510	610	
Demodulation Relative Amplitude	$3 N G_{R / B}$	－	（Note C_{13} ）	0.69	0.77	0.86	times
	4NG $/ \mathrm{B}$	－		0.70	0.77	0.85	
	$4 \mathrm{PG}_{\mathrm{R} / \mathrm{B}}$	－		0.49	0.56	0.64	
Demodulation Relative Phase	3N日R－B	－	（Note C_{14} ）	85	93	100	－
	4N日R－B	－		87	93	99	
	4P日R－B	－		85	90	95	
Demodulation Output Residual Carrier	3N－SCB	－	（Note C_{15} ）	0	5	15	$m V_{p-p}$
	3N－SCR	－					
	4N－SCB	－					
	4N－SCR	－					

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Demodulation Output Residual Higher Harmonic	3N-HCB	-	(Note C_{16})	0	10	30	$m V_{p-p}$
	3N-HCR	-					
	4N-HCB	-					
	4N-HCR	-					
Color Difference Output ATT Check	$B-Y-1 \mathrm{~dB}$	-	(Note C17)	-1.20	-0.9	-0.60	dB
	$B-Y-2 \mathrm{~dB}$	-		-2.30	-1.7	-1.55	
	$B-Y+1 \mathrm{~dB}$	-		0.60	0.8	1.20	
16.2 MHz Oscillation Frequency	$\Delta \mathrm{foF}$	-	(Note C_{18})	-2.0	0	2.0	kHz
16.2 MHz Oscillation Start Voltage	VFon1	-	(Note C19)	3.0	3.2	3.4	V
f_{sc} Free-Run Frequency $(3.58 \mathrm{M})$	3 fr	-	(Note C_{20})	-100	50	200	Hz
(4.43 M)	4 fr	-		-125	25	175	
(M-PAL)	Mfr	-					
(N-PAL)	Nfr	-		-140	10	160	
f_{sc} Output Amplitude	4.43 e 27	-	(Note C_{21})	420	500	580	$m V_{p-p}$
	3.58 e 27	-					
$\mathrm{f}_{\text {sc }}$ Output DC Voltage	3.58 eV 27	-	-	2.6	2.9	3.2	V
	0th V27	-		1.6	1.9	2.2	

DEF section

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
H. Reference Frequency	FHVCO	-	(Note DH1)	5.95	6.0	6.10	MHz
H. Reference Oscillation Start Voltage	VSHVCO	-	(Note DH2)	2.3	2.6	2.9	V
H. Output Frequency 1	$f \mathrm{H} 1$	-	(Note DH3)	15.5	15.625	15.72	kHz
H. Output Frequency 2	fH2	-	(Note DH4)	15.62	15.734	15.84	
H. Output Duty 1	H 41	-	(Note DH5)	39	41	43	\%
H. Output Duty 2	$\mathrm{H} \varphi 2$	-	(Note DH6)	35	37	39	
H. Output Duty Switching Voltage 1	V_{5-1}	-	(Note DH7)	1.2	1.5	1.8	V
	VHH	-	(Note DH8)	4.5	5.0	5.5	
.	VHL	-		-	-	0.5	
H. Output Oscillation Start Voltage	VHS	-	(Note DH9)	-	5.0	-	
H. FBP Phase	φ FBP	-	(Note DH10)	6.2	6.9	7.6	$\mu \mathrm{s}$
H. Picture Position, Maximum	HSFTmax	-	(Note DH11)	17.7	18.4	19.1	
H. Picture Position, Minimum	HSFTmin	-	(Note DH12)	12.4	13.1	13.8	
H. Picture Position Control Range	$\Delta \mathrm{HSFT}$	-	(Note DH13)	4.5	5.3	6.1	
H. Distortion Correction Control Range	$\triangle \mathrm{HCC}$	-	(Note DH14)	0.5	1.0	1.5	$\mu \mathrm{s} / \mathrm{V}$
H. BLK Phase	φ BLK	-	(Note DH15)	6.2	6.9	7.6	$\mu \mathrm{s}$
H. BLK Width, Minimum	BLKmin	-	(Note DH16)	9.8	10.5	11.3	
H. BLK Width, Maximum	BLKmax	-	(Note DH17)	13.2	14.0	14.7	
P / N-GP Start Phase 1	SPGP1	-	(Note DH18)	3.45	3.68	3.90	
P / N-GP Start Phase 2	SPGP2	-	(Note DH19)	3.95	4.18	4.40	
P / N-GP Gate Width 1	PGPW1	-	(Note DH20)	1.65	1.75	1.85	
P / N-GP Gate Width 2	PGPW2	-	(Note DH21)	1.70	1.75	1.85	
SECAM-GP Start Phase 1	SSGP1	-	(Note DH22)	5.2	5.4	5.6	
SECAM-GP Start Phase 2	SSGP2	-	(Note DH23)	5.7	6.0	6.2	
SECAM-GP Gate Width 1	SGPW1	-	(Note DH24)	1.9	2.0	2.1	
SECAM-GP Gate Width 2	SGPW2	-	(Note DH25)	1.9	2.0	2.1	
Noise Detection Level 1	NL1	-	(Note DH26)	0.09	0.12	0.15	V
Noise Detection Level 2	NL2	-	(Note DH27)	0.20	0.25	0.31	
Noise Detection Level 3	NL3	-	(Note DH28)	0.31	0.39	0.49	
Noise Detection Level 4	NL4	-	(Note DH29)	0.44	0.55	0.68	

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
AFC-MASK Start Phase	φ AFCf	-	(Note DV1)	2.6	3.2	3.8	H
AFC-MASK Stop Phase	φ AFCe	-	(Note DV2)	4.4	5.0	5.6	
VNFB phase	φ VNFB	-	(Note DV3)	0.45	0.75	1.05	
V. Output Maximum Phase	$V \varphi$ max	-	(Note DV4)	7.3	8.0	8.7	
V. Output Minimum Phase	V φ min	-	(Note DV5)	0.5	1.0	1.5	
V. Output Phase Variable Range	$\Delta \mathrm{V} \varphi$	-	(Note DV6)	6.3	7.0	7.7	
50 System VBLK Start Phase	V50BLKf	-	(Note DV7)	0.4	0.55	0.7	
50 System VBLK Stop Phase	V50BLKe	-	(Note DV8)	20	23	26	
60 System VBLK Start Phase	V60BLKf	-	(Note DV9)	0.4	0.55	0.7	
60 System VBLK Stop Phase	V60BLKe	-	(Note DV10)	15	18	21	
Pin 56 VBLK Max Voltage	V56H	-		4.7	5.0	5.3	V
Pin 56 VBLK Min Voltage	V56L	-		0	-	0.3	
V. Lead-In Range 1	VAcaL	-	(Note DV11)	-	224.5	-	Hz
	VAcaH	-		-	344.5	-	
V. Lead-In Range 2	V60caL	-	(Note DV12)	-	224.5	-	
	V60caH	-		-	294.5	-	
VBLK Start Phase	SWVB	-	(Note DV13)	9	-	88	H
VBLK Stop Phase	STWVB	-	(Note DV14)	10		120	

Deflection correction stage

CHARACTERISTICS	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \end{aligned}$	TEST CONDITIONS	MIN	TYP.	MAX	UNIT
Vertical Ramp Amplitude	$\mathrm{V}_{\text {P49 }}$	-	(Note G1)	1.76	1.95	2.15	V_{p-p}
Vertical Amplification	GV	-	(Note G2)	20	26	32	dB
Vertical Amp Maximum Output Voltage	$\mathrm{V}_{\mathrm{H} 53}$	-	(Note G3)	2.5	3	3.5	V
Vertical Amp Minimum Output Voltage	$\mathrm{V}_{\mathrm{L} 53}$	-	(Note G4)	-	0	0.3	V
Vertical Amp Maximum Output Current	$\mathrm{I}_{\mathrm{MAX} 1}$	-	(Note G5)	32	45	58	mA
Vertical NF Sawtooth Wave Amplitude	$V_{\text {P54 }}$	-	(Note G6)	1.62	1.8	1.98	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Vertical Amplitude Range	VPH	-	(Note G7)	± 41	± 45	± 49	\%
Vertical Linearity Correction Maximum Value	V_{ℓ}	-	(Note G8)	± 10	± 13	± 16	\%
Vertical S Correction Maximum Value	V_{S}	-	(Note G9)	± 11	± 16	± 21	\%
Vertical NF Center Voltage	V_{C}	-	(Note G10)	4.3	4.5	4.7	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Vertical Amplitude EHT Correction	$\mathrm{V}_{\text {EHT }}$	-	(Note G11)	8	9	10	\%
EHT Dynamic Range	V_{L}	-	(Note G12)	1.3	1.8	2.3	V
	V_{H}	-		5.7	6.2	6.7	
E-W NF Maximum DC Value (Picture Width)	$\mathrm{V}_{\mathrm{H} 51}$	-	(Note G13)	5.5	6.5	7.5	V
E-W NF Minimum DC Value (Picture Width)	$V_{\text {L51 }}$	-	(Note G14)	0.55	1.5	2.45	V
E-W NF Parabola Maximum Value (Parabola)	V_{PB}	-	(Note G15)	2.2	2.7	3.2	V_{p-p}
E-W NF Corner Correction (Corner)	V_{CR}	-	(Note G16)	2	3	4	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Parabola Symmetry Correction	$\mathrm{V}_{\text {TR }}$	-	(Note G17)	8	10	12	\%
E-W Parabola EHT Value	$\mathrm{V}_{\mathrm{EH} 1}$	-	(Note G18)	2	3.3	4.5	\%
E-W DC EHT Value	VEH2	-	(Note G19)	0.6	1	1.4	V
E-W Amp Maximum Output Current	$\mathrm{I}_{\text {MAX2 }}$	-	(Note G20)	0.14	0.2	0.28	mA
AGC Operating Current 1	$V_{\text {AGC0 }}$	-	(Note G21)	160	200	240	$\mu \mathrm{A}$
AGC Operating Current 2	$\mathrm{V}_{\text {AGC1 }}$	-	(Note G22)	480	600	720	$\mu \mathrm{A}$
Vertical Guard Voltage	V_{VG}	-	(Note G23)	0.8	1	1.2	V
V Centering DAC Output	I_{54}	-	(Note G24)	-	10	100	nA

1H DL section

CHARACTERISTIC	SYMBOL	$\begin{array}{\|l\|} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{array}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
1HDL Dynamic Range, Direct	VNBD	-	(Note H_{1})	0.8	1.2	-	V
	VNRD	-					
1HDL Dynamic Range, Delay	VPBD	-	(Note H_{2})	0.8	1.2	-	
	VPRD	-					
1HDL Dynamic Range, Direct+Delay	VSBD	-	$\left(\right.$ Note H_{3})	0.9	1.2	-	
	VSRD	-					
Frequency Characteristic, Direct	GHB1	-	(Note H4)	-3.0	-2.0	0.5	dB
	GHR1	-					
Frequency Characteristic, Delay	GHB2	-	(Note H_{5})	-8.2	-6.5	-4.3	
	GHR2	-					
AC Gain, Direct	GBY1	-	(Note H_{6})	-2.0	-0.5	2.0	
	GRY1	-					
AC Gain, Delay	GBY2	-	(Note H7)	-2.4	-0.5	1.1	
	GRY2	-					
Direct-Delay AC Gain Difference	GBYD	-	(Note H_{8})	-1.0	0.0	1.0	
	GRYD	-					
Color Difference Output DC Stepping	VBD	-	(Note H_{9})	-5	0.0	5	mV
	VRD	-					
1H Delay Quantity	BDt	-	(Note H_{10})	63.7	64.0	64.4	$\mu \mathrm{s}$
	RDt	-					
Color Difference Output	Bomin	-	(Note H_{11})	22	36	55	mV
DC-Offset Control	Bomax	-		-55	-36	-22	
Bus-Min Data	Romin	-		22	36	55	
Bus-Max Data	Romax	-		-55	-36	-22	
Color Difference Output DC-Offset Control / Min. Control Quantity	Bo1	-	(Note H_{12})	1	4	8	
	Ro1	-					
NTSC Mode Gain / NTSC-COM Gain	GNB	-	(Note H_{13})	-0.90	0	1.20	dB
	GNR	-		0.92	0	1.58	

Text section

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Y Color Difference Clamping Voltage	Vcp31	-	(Note T1)	1.7	2.0	2.3	V
	Vcp33	-		2.2	2.5	2.8	
	Vcp34	-					
Contrast Control Characteristic	Vc12mx	-	(Note T2)	2.50	3.00	3.50	
	Vc12mn	-		0.06	0.14	0.21	
	D12c80	-		0.83	1.24	1.86	
	Vc13mx	-		2.50	3.00	3.50	
	Vc13mn	-		0.06	0.14	0.21	
	D13c80	-		0.83	1.24	1.86	
	Vc14mx	-		2.50	3.00	3.50	
	Vc14mn	-		0.06	0.14	0.21	
	D14c80	-		0.83	1.24	1.86	
AC Gain	Gr	-	(Note T3)	2.8	4.0	5.2	times
	Gg	-					
	Gb	-					
Frequency Characteristic	Gf	-	(Note T4)	-	-1.0	-3.0	dB
Y Sub-Contrast Control Characteristic	Δ Vscnt	-	(Note T_{5})	3.0	6.0	9.0	V
Y_{2} Input Range	Vy2d	-	(Note T6)	0.7	-	-	
Unicolor Control Characteristic	Vn12mx	-	(Note T7)	1.6	2.3	4.3	
	Vn12mn	-		0.05	0.12	0.19	
	D12n80	-		0.67	1.16	1.68	
	Vn14mx	-		1.6	2.3	4.3	
	Vn14mn	-		0.05	0.12	0.19	
	D14n80	-		0.67	1.16	1.68	
	$\Delta \mathrm{V} 14 \mathrm{un}$	-		22	27	32	dB
Relative Amplitude (NTSC)	Mnr-b	-	(Note T8)	0.70	0.77	0.85	times
	Mng-b	-		0.30	0.34	0.38	
Relative Phase (NTSC)	$\theta \mathrm{nr}-\mathrm{b}$	-	(Note T9)	87	93	99	-
	Өng-b	-		235	241.5	248	
Relative Amplitude (PAL)	Mpr-b	-	(Note T10)	0.50	0.56	0.63	times
	Mpg-b	-		0.30	0.34	0.38	
Relative Phase (PAL)	Өpr-b	-	(Note T11)	86	90	94	。
	$\theta p g-b$	-		232	237	242	

CHARACTERISTIC	SYMBOL	$\begin{gathered} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{gathered}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Color Control Characteristic	Vcmx	-	(Note T12)	1.19	1.41	1.68	V_{p-p}
	$\mathrm{e}_{\text {col }}$	-		80	128	160	step
	$\Delta_{\text {col }}$	-		142	192	242	
Color Control Characteristic, Residual Color	e_{cr}	-	(Note T_{13})	0	12.5	25	$m V_{p-p}$
	e_{cg}	-					
	e_{cb}	-					
Chroma Input Range	Vcr	-	(Note T14)	700	-	-	
Brightness Control Characteristic	Vbrmx	-	(Note T_{15})	3.05	3.45	3.85	V
	Vbrmn	-		1.05	1.35	1.65	
Brightness Center Voltage	Vbent	-	(Note T16)	2.05	2.30	2.55	
Brightness Data Sensitivity	$\Delta \mathrm{Vbrt}$	-	(Note T17)	6.3	7.8	9.4	mV
RGB Output Voltage Axes Difference	$\Delta \mathrm{Vbct}$	-	(Note T18)	-150	0	150	
White Peak Limit Level	Vwpl	-	(Note T19)	2.63	3.25	3.75	V
Cutoff Control Characteristic	Vcomx	-	(Note T_{20})	2.55	2.75	2.95	
	Vcomn	-		1.55	1.75	1.95	
Cutoff Center Level	Vcoct	-	(Note T21)	2.05	2.3	2.55	
Cutoff Variable Range	Δ Dcut	-	(Note T22)	2.3	3.9	5.5	mV
Drive Variable Range	DR+	-	(Note T23)	2.7	3.85	5.0	dB
	DR-	-		-6.5	-5.6	-4.7	
DC Regeneration	TDC	-	(Note T24)	0	50	100	mV
RGB Output S / N Ratio	SNo	-	(Note T25)	-	-50	-45	dB
Blanking Pulse Output Level	Vv	-	(Note T26)	0.7	1.0	1.3	V
	Vh	-					
Blanking Pulse Delay Time	$t_{\text {don }}$	-	(Note T27)	0.05	0.25	0.45	$\mu \mathrm{s}$
	$t_{\text {doff }}$	-		0.05	0.35	0.85	
RGB Min. Output Level	Vmn	-	(Note T28)	0.8	1.0	1.2	V
RGB Max. Output Level	Vmx	-	(Note T29)	6.85	7.15	7.45	
Halftone Ys Level	Vthtl	-	(Note T30)	0.7	0.9	1.1	
Halftone Gain	G6htl3	-	(Note T31)	-7.5	-6.0	-4.5	dB
Text ON Ys Level	VttxI	-	(Note T32)	1.8	2.0	2.2	
Text / OSD Output, Low Level	Vtx113	-	(Note T33)	-0.45	-0.25	-0.05	
Text RGB Output, High Level	Vmt13	-	(Note T34)	1.15	1.4	1.85	
OSD Ys ON Level	Vtosl	-	(Note T_{35})	2.8	3.0	3.2	V
OSD RGB Output, High Level	Vmos13	-	(Note T36)	1.75	2.15	2.55	
Text Input Threshold Level	Vtxtg	-	(Note T37)	0.7	1.0	1.3	
OSD Input Threshold Level	Vosdg	-	(Note T38)	1.7	2.0	2.3	

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
OSD Mode Switching Rise-Up Time	TRosr	-	(Note T39)	-	40	100	ns
	TRosg	-					
	TRosb	-					
OSD Mode Switching Rise-Up Transfer Time	tpRosr	-	(Note T40)	-	40	100	ns
	$t_{\text {PRosg }}$	-					
	tpRosb	-					
OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	$\Delta t_{\text {PRos }}$	-	(Note T41)	-	15	40	ns
OSD Mode Switching Breaking Time	TFosr	-	(Note T42)	-	30	100	ns
	${ }^{\top}$ Fosg	-					
	TFosb	-					
OSD Mode Switching Breaking Transfer Time	tpFosr	-	(Note T43)	-	30	100	ns
	tpFosg	-					
	tpFosb	-					
OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	$\Delta t_{\text {FRos }}$	-	(Note T44)	-	20	40	ns
OSD Hi DC Switching Rise-Up Time	TRoshr	-	(Note T45)	-	20	100	ns
	${ }^{\text {T }}$ Roshg	-					
	${ }^{\text {TR }}$ Roshb	-					
OSD Hi DC Switching Rise-Up Transfer Time	$t_{\text {PRohr }}$	-	(Note T46)	-	20	100	ns
	tpRohg	-					
	tpRohb	-					
OSD Hi DC Switching Rise-Up Transfer Time, 3 Axes Difference	$\Delta t_{\text {PRoh }}$	-	(Note T47)	-	0	40	ns
OSD Hi DC Switching Breaking Time	${ }^{\text {T }}$ Foshr	-	(Note T48)	-	20	100	ns
	${ }^{\text {T}}$ Foshg	-					
	${ }^{\text {T }}$ Foshb	-					
OSD Hi DC Switching Breaking Transfer Time	tPFohr	-	(Note T49)	-	20	100	ns
	tpFohg	-					
	tPFohb	-					
OSD Hi DC Switching Breaking Transfer Time, 3 Axes Difference	$\Delta t_{\text {PFoh }}$	-	(Note T_{50})	-	0	40	ns

CHARACTERISTIC	SYMBOL	$\begin{aligned} & \hline \text { TEST } \\ & \text { CIR- } \\ & \text { CUIT } \\ & \hline \end{aligned}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
RGB Contrast Control Characteristic	Vc12mx	-	(Note T51)	2.10	2.5	2.97	V
	Vc12mn	-		0.05	0.12	0.19	
	D12c80	-		0.84	1.25	1.87	
	Vc13mx	-		2.10	2.5	2.97	
	Vc13mn	-		0.05	0.12	0.19	
	D13c80	-		0.84	1.25	1.87	
	Vc14mx	-		2.10	2.5	2.97	
	Vc14mn	-		0.05	0.12	0.19	
	D14c80	-		0.84	1.25	1.87	
Analog RGB AC Gain	Gag	-	(Note T52)	4.0	5.1	6.3	times
Analog RGB Frequency Characteristic	Gfg	-	(Note T_{53})	-0.5	-1.75	-3.0	dB
Analog RGB Dynamic Range	Dr24	-	(Note T_{54})	0.5	-	-	V
RGB Brightness Control Characteristic	Vbrmxg	-	(Note T55)	3.05	3.25	3.45	
	Vbrmng	-		1.05	1.25	1.45	
RGB Brightness Center Voltage	Vbentg	-	(Note T_{56})	2.05	2.25	2.45	
RGB Brightness Data Sensitivity	$\Delta \mathrm{Vbrtg}$	-	(Note T57)	6.3	7.8	9.4	mV
Analog RGB Mode ON Voltage	Vanath	-	(Note T58)	0.8	1.0	1.2	V
Analog RGB Switching Rise-Up Time	TRanr	-	(Note T59)	-	50	100	ns
	TRang	-					
	TRanb	-					
Analog RGB Switching Rise-Up Transfer Time	tPRanr	-	(Note T60)	-	20	100	
	tpRang	-					
	tpRanb	-					
Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference	Δ tpRas	-	(Note T61)	-	0	40	
Analog RGB Switching Breaking Time	${ }^{\text {T Fanr }}$	-	(Note T62)	-	50	100	
	TFang	-					
	TFanb	-					
Analog RGB Switching Breaking Transfer Time	tPFanr	-	(Note T63)	-	30	100	
	tpFang	-					
	tPFanb	-					
Analog RGB Switching Breaking Transfer Time, 3 Axes Difference	$\Delta t_{\text {PFas }}$	-	(Note T64)	-	0	40	

SECAM section

CHARACTERISTIC	SYMBOL	$\begin{gathered} \hline \text { TEST } \\ \text { CIR- } \\ \text { CUIT } \\ \hline \end{gathered}$	TEST CONDITION	MIN	TYP.	MAX	UNIT
Bell Monitor Output Amplitude	embo	-	(Note S_{1})	200	300	400	$m V_{p-p}$
Bell Filter f_{0}	foB-C	-	(Note S_{2})	-23	0	23	kHz
Bell Filter f_{o} Variable Range	foB-L	-	(Note S3)	-69	-46	-23	
	foB-H	-		69	92	115	
Bell Filter Q	QBEL	-	(Note S4)	14	16	18	-
Color Difference Output Amplitude	VBS	-	(Note S_{5})	0.50	-	0.91	V_{p-p}
	VRS	-		0.39	-	0.73	
Color Difference Relative Amplitude	R / B-S	-	(Note S_{6})	0.70	-	0.90	-
Color Difference Attenuation Quantity	SATTB	-	(Note S_{7})	-1.50	-	-0.50	dB
	SATTR	-					
Color Difference S / N Ratio	SNB-S	-	(Note S_{8})	-85	-	-25	
	SBR-S	-					
Linearity	LinB	-	(Note S9)	75	-	117	\%
	LinR	-		85	-	120	
Rising-Fall Time (Standard De-Emphasis)	trfB	-	(Note S_{10})	-	1.3	1.5	$\mu \mathrm{s}$
	trfR	-					
Rising-Fall Time (Wide-Band De-Emphasis)	trfBw	-	(Note S_{11})	-	1.1	1.3	
	trfRw	-					
Killer Operation Input Level (Standard Setting)	eSK	-	(Note S_{12})	0.5	1	2	$m V_{p-p}$
	eSC	-					
Killer Operation Input Level (VID ON)	eSFK	-	(Note S_{13})				
	eSFC	-					
Killer Operation Input Level (Low Sensitivity, VID OFF)	eSWK	-	(Note S_{14})	0.7	1.5	3	
	eSWC	-					

TEST CONDITION
 VIDEO SECTION

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)											
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{39}	S_{42}	S_{44}	S_{45}	S_{51}	04H	08H	OFH	10H	13H	14H	
Y_{1}	Y Input Pedestal Clamping Voltage	A	C	B	A	A	20H	04H	80H	OOH	3AH	03H	(1) Short circuit pin $45\left(Y_{1} I N\right)$ in AC coupling. (2) Input synchronizing signal to pin 48 (SYNC IN). (3) Measure DC voltage at pin 45, and express the measurement result as VYclp.
Y_{2}	Chroma Trap Frequency	\uparrow	\uparrow	A	B	\uparrow	(1) Set the 358 TRAP mode to AUTO by setting the bus data. (2) Set the bus data so that chroma trap is ON and f_{0} is 0 . (3) Input TG7 sine wave signal whose frequency is 3.58 MHz (NTSC) and video amplitude is 0.5 V to $\operatorname{pin} 45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$. (4) While observing waveform at pin 37 ($\mathrm{Y}_{1 \text { out }}$), find a frequency with minimum amplitude of the waveform. The obtained frequency shall be expressed as flr3. (5) Change the frequency of the signal 1 to 4.43 MHz (PAL) and perform the same measurement as the preceding step4. The obtained frequency shall be expressed as flr4.						
Y_{3}	Chroma Trap Attenuation (3.58 MHz)	\uparrow	Vari-	\uparrow	$\begin{array}{\|l\|} \hline \text { Vari- } \\ \text { able } \end{array}$	\uparrow	(1) Set the bus data so that Q of chroma trap is 1.5 . (2) Set the bus data so that f_{0} of chroma trap is 0 . (3) Input TG7 sine wave signal whose frequency is 3.58 MHz (NTSC) and video amplitude is 0.5 V to $\operatorname{pin} 45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$. (4) While turning on and off the chroma trap by controlling the bus, measure chroma amplitude (VTon) at pin 37 ($\mathrm{Y}_{\text {1out }}$) with the chroma trap being turned on and measure chroma amplitude (VToff) at pin 37 ($\mathrm{Y}_{\text {1out }}$) with the chroma trap being turned off. Gtr = 20log (VToff / VTon) (5) Change f_{0} of the chroma trap to $-100 \mathrm{kHz},-50 \mathrm{kHz}, 0$ and +50 kHz , and perform the same measurement as the preceding steps 4 and 5 with the respective f_{0} settings. (6) Change Q of the chroma trap to $1,1.5,2$ and 2.5 , and perform the same measurement as the preceding steps 4 through 6 . The maximum Gtr shall be expressed as Gtr3a.						

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB $\mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)											
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{39}	S_{42}	S_{44}	S_{45}	S_{51}	04H	08H	0FH	10H	13H	14H	
Y4	Chroma Trap Attenuation (4.43 MHz)	A	C	A	B	A	20 H	04H	Variable	00H	3AH	03H	(1) Set the S-D-Trap is ON. (2) Set the bus data so that Q of chroma trap is 1.5. (3) Set the bus data so that f_{0} of chroma trap is 0 . (4) Input TG7 sine wave signal whose frequency is 4.43 MHz and video amplitude is 0.5 V to pin $45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$. (5) Perform the same measurement as the steps 4 through 6 of the preceding item Y_{3}. The measurement result shall be expressed as Gtr4.
Y_{5}	Chroma Trap Attenuation (SECAM)	\uparrow	(1) Set the Dtrap is ON. (2) Set the bus data so that Q of chroma trap is 1.5. (3) Set the bus data so that f_{0} of chroma trap is 0 . (4) Input SECAM signal whose amplitude in video period is 0.5 V to pin $45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$. (5) Perform the same measurement as the steps 5 through 7 of the preceding item Y_{3} to find the maximum attenuation (Gtrs).										
Y6	Yy Correction Point	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	Variable	80H	\uparrow	3AH	\uparrow	(1) Connect the power supply to pin $45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$. (2) Turn off Y_{Y} by setting the bus data. (3) While raising the supply voltage from the level measured in the preceding item Y_{1}, measure voltage change characteristic of Y_{1} output at pin 37. (4) Set the bus data to turn on Yy (5) Perform the same measurement as the above step 3. (6) Find a gamma (γ) point from the measurement results of the steps3 and 5. $\mathrm{yp}=\mathrm{Vr} \div 0.7 \mathrm{~V}$
Y_{7}	Yy Correction Curve	\uparrow	From the measurement in the above item Y_{6}, find gain of the portion that the γ correction has an effect on.										

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{FSC} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)											
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{39}	S_{42}	S_{44}	S_{45}	S_{51}	04H	08H	OFH	10H	13H	14H	
Y_{8}	APL Terminal Output Impedance	A	C	B	A	A	20H	04H	80H	00H	3AH	03H	(1) Short circuit pin $45\left(Y_{1} \mathrm{IN}\right)$ in AC coupling. (2) Input synchronizing signal to pin 51. (3) Connect power supply and an ammeter to the APL of pin 44 as shown in the figure, and adjust the power supply so that the ammeter reads 0 (zero). (4) Raise the voltage at pin 44 by 0.1 V , and measure the current (lin) at that time. $\mathrm{Zo44}(\Omega)=0.1 \mathrm{~V} \div \operatorname{lin}(\mathrm{A})$
Y_{9}	DC Transmission Compensation Amplifier Gain	\uparrow	$\left\|\begin{array}{c} \text { Vari- } \\ \text { able } \end{array}\right\|$	(1) Set the bus data so that DC transmission factor correction gain is maximum. (2) In the condition of the Note Y_{8}, observe $\mathrm{Y}_{1 \text { out }}$ waveform at pin 37 and measure voltage change in the video period. (3) Set the bus data so that DC transmission factor correction gain is centered, and measure voltage in the same manner as the above step 2 Adr $=\left(\Delta V_{2}-\Delta V_{1}\right) \div 0.1 \mathrm{~V} \div \mathrm{Y}_{1}$ gain									
Y_{10}	Maximum Gain of Black Expansion Amplifier	\uparrow	\uparrow	A	B	\uparrow	\uparrow	\uparrow	OOH	\uparrow	\uparrow	E3H	(1) Set the bus data so that black expansion is on and black expansion point is maximum. (2) Input TG7 sine wave signal whose frequency is 500 kHz and video amplitude is 0.1 V to pin $45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$. (3) While impressing 1.0 V to pin 39 (Black Peak Hold), measure amplitude (Va) of $\mathrm{Y}_{1 \text { out }}$ signal at pin 37. (4) While impressing 3.5 V to pin 39 (Black Peak Hold), measure amplitude (Vb) of $\mathrm{Y}_{1 \text { out }}$ signal at pin 37. $\mathrm{Akc}=\mathrm{Va} \div \mathrm{Vb}$

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)												
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD	
		S_{39}	S_{42}	S_{44}	S_{45}	S_{51}	04H	08H	OFH	10 H	13 H	14H		
Y_{11}	Black Expansion Start Point	A	C	A	A	A	20H	04H	OOH	OOH	ЗАН	$\begin{aligned} & \text { Vari- } \\ & \text { able } \end{aligned}$	(1) Set the bus data so that black expansion is on and black expansion point is maximum. (2) Supply 1.0 V to pin 39 (Black Peak Hold). (3) Supply 2.9 V to the APL of pin 44. (4) Connect the power supply to pin $45\left(\mathrm{Y}_{1}\right.$ IN). While raising the supply voltage from the level measured in the preceding item Y_{1}, measure voltage change at pin 37 ($Y_{\text {1out }}$). (5) Set the bus data to center the black expansion point, and perform the same measurement as the above steps 2 through 4. (6) Set the black expansion point to the minimum by setting the bus data, and perform the same measurement as the above steps 2 through 4. (7) While supplying 2.2 V to the APL of pin 44, perform the same measurement as the above step 4 with the black expansion point set to maximum, center and minimum	
Y_{12}	Black Peak Detection Period (Horizontal)	B	\uparrow	E3H										
	Black Peak Detection Period													

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB $\mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)											
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{39}	S_{42}	S44	S_{45}	S_{51}	04H	08H	OFH	10H	13H	14H	
Y_{13}	Picture Quality Control Peaking Frequency	A	C	A	B	A	3FH	04H	80H	OOH	3AH	$\begin{array}{\|l\|l\|} \hline \text { Vari- } \\ \text { able } \end{array}$	(1) Set the bus data so that picture quality control frequency is 2.5 MHz . (2) Input TG7 sine wave (sweeper) signal whose video level is 0.1 V to pin $45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$ and pin 51 (Sync. IN). (3) Maximize the picture quality control data. (4) While observing $Y_{1 \text { out }}$ of pin 37 , find an SG frequency as the waveform amplitude is maximum (fp25). (5) Set the bus data so that picture quality control frequency is 3.1 MHz and 4.2 MHz , and perform the same measurement as the above steps 2 through 4 at the respective frequencies ($\mathrm{fp} 31, \mathrm{fp} 42$).
Y_{14}	Picture Quality Control Maximum Characteristic	\uparrow	(1) Input TG7 sine wave (sweeper) signal whose video level is 0.1 V to pin $45\left(\mathrm{Y}_{1} \mathrm{IN}\right)$ and pin 48 (Sync. IN). (2) Set the picture quality control data to maximum. (3) Set the picture quality control frequency is 2.5 MHz by setting the bus data. (4) Measure amplitude (V100k) of the output of pin 37 (Y_{1} OUT) as the SG frequency is 100 kHz , and the amplitude (Vp 25) of the same as the SG frequency is 2.5 MHz . $\text { GS25MX = } 20 \log \text { (Vp25 / V100k) }$ (5) Set the picture quality control frequency data to 3.1 MHz by setting the bus data. (6) Measure amplitude (V100k) of the output of pin 37 (Y_{1} OUT) as the SG frequency is 100 kHz , and the amplitude (Vp 31) of the same as the SG frequency is 3.1 MHz . $\text { GS31MX = } 20 \text { log (Vp31 / V100k) }$ (7) Set the picture quality control frequency to 4.2 MHz by setting the bus data. (8) Measure amplitude (V100k) of the output of pin 37 (Y_{1} OUT) as the SG frequency $\text { GS42MX = } 20 \text { log (Vp42 / V100k) }$										

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{FSC} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)												
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD	
		S_{39}	S_{42}	S_{44}	S_{45}	S_{51}	04H	08H	OFH	10 H	13H	14H		
Y 15	Picture Quality Control Minimum Characteristic	A	C	A	B	A	OOH	04H	80H	OOH	3AH	$\begin{array}{\|l\|l\|} \text { Vari- } \\ \text { able } \end{array}$	(2)	In the condition of the Note Y_{14}, set the picture quality control bus data to minimum. Perform the same measurement as the steps 3 through 8 of the Note Y_{14} to find respective gains as the picture quality control frequency is set to $2.5 \mathrm{MHz}, 3.1 \mathrm{MHz}$ and 4.2 MHz. $\begin{aligned} & \text { GS25MN }=20 \log (V p 25 / \text { V100k }) \\ & \text { GS31MN }=20 \log (V p 31 / \text { V100k }) \\ & \text { GS42MN }=20 \log (V p 42 / \text { V100k }) \end{aligned}$
Y_{16}	Picture Quality Control Center Characteristic	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	2 H	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	(1)	In the condition of the Note Y_{14}, set the picture quality control bus data to center. Perform the same measurement as the steps 3 through 8 of the Note Y_{14} to find respective gains as the picture quality control frequency is set to $2.5 \mathrm{MHz}, 3.1 \mathrm{MHz}$ and 4.2 MHz . $\begin{aligned} & \text { GS25CT }=20 \log (V p 25 / \text { V100k }) \\ & \text { GS31CT }=20 \log (V p 31 / \text { V100k }) \\ & \text { GS42CT }=20 \log (V p 42 / \text { V100k }) \end{aligned}$
Y_{17}	Y Signal Gain	\uparrow	03H	(1)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum. Input TG7 sine wave signal whose frequency is 100 kHz and video level is 0.5 V to pin 45 ($\mathrm{Y}_{1} \mathrm{IN}$) and pin 48 (Sync. IN). (Vyi100) Measure amplitude of Y_{1} output at pin 37 (Vyout). Gy $=20 \log$ (Vyout / Vyi100)									
Y_{18}	Y Signal Frequency Characteristic	\uparrow	(2) (3) (4)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum. Input TG7 sine wave signal whose frequency is 6 MHz and video level is 0.5 V to pin 45 ($\mathrm{Y}_{1} \mathrm{IN}$) and pin 48 (Sync. IN). (Vyi6M) Measure amplitude of Y_{1} output at pin 37 (Vyo6M). $\text { Gy6M }=20 \log (V y o 6 M / V y i 6 M)$ Find Gfy from the result of the Note Y_{17} Gfy = Gy6M - Gy										

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)												
		SW MODE					SUB-ADDRESS \& BUS DATA						MEASURING METHOD	
		S_{39}	S_{42}	S_{44}	S_{45}	S_{51}	04H	08H	OFH	10 H	13H	14H		
													(1)	Set the bus data so that black expansion is off, picture quality control is off and DC transmission compensation is minimum.
Y_{19}	Y Signal Maximum Input Range	A	C	A	B	A	20H	04H	80H	00H	ЗАН	03H	(2)	Input TG7 sine wave signal whose frequency is 100 kHz to pin 45 ($\mathrm{Y}_{1} \mathrm{IN}$) and pin 48 (Sync. IN).
													(3)	While increasing the amplitude Vyd of the signal in the video period, measure Vyd just before the waveform of Y_{1} output (pin 37) is distorted.

CHROMA SECTION

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : H, RGB $\mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		SW MODE										MEASURING METHOD
		S_{26}	S_{1}	S_{31}	S_{33}	S_{34}	S_{39}	S_{42}	S_{44}	S_{45}	S_{51}	
C_{9}	APC Lead-In Range	$\begin{gathered} \text { OFF } \\ \downarrow \\ \text { ON } \end{gathered}$	A	B	B	B	A	$\begin{aligned} & \text { A } \\ & \downarrow \\ & \text { C } \end{aligned}$	A	A	B	(1) Connect band pass filter $(Q=2)$, set to $T V$ mode ($f_{o}=600 \mathrm{kHz}$) with X'tal clock conforming to European, Asian system. (2) Set the gate to normal status. (3) Input $3 \mathrm{~N} C W$ signal of $100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ to pin 42 of the chroma input terminal. (4) While changing frequency of the CW (continuous waveform) signal, measure its frequency when B-Y color difference signal of pin 36 is colored. (5) Input 4N CW (continuous waveform) 100 mV p-p signal to pin 42 (Chroma IN). (6) While changing frequency of the CW signal, measure frequencies when B-Y color difference output of pin 36 is colored and discolored. Find difference between the measured frequency and $\mathrm{f}_{\mathrm{C}}(4.433619 \mathrm{MHz}$) and express the differences as fPH and fPL, which show the APC lead-in range. (7) Variable frequency of VCXO is used to cope with lead-in of $3.582 \mathrm{MHz} / 3.575 \mathrm{MHz}$ PAL system. (8) Activate the test mode (S26-ON, Sub Add 02 ; 02h). (9) Input nothing to pin 42 (Chroma IN). (10) While varying voltage of pin 30 (APC Filter), measure variable frequency of VCXO at pin 35 (R-Y OUT) while observing color and discoloring of R-Y color difference signal. Express difference between the high frequency (fH) and f_{o} center as 3.582 HH , and difference between the low frequency (fL) and f_{0} center as 3.582 HL . Perform the same measurement for the NP system (3.575 MHz PAL).
C_{10}	APC Control Sensitivity	ON	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	C	\uparrow	\uparrow	\uparrow	(1) Activate the test mode (S26-ON, Sub Add 02 ; 02h). (2) Connect band pass filter as same as the Note C9. (3) Change the X'tal mode properly to the system. (4) Input nothing to pin 42 (Chroma IN). (5) When V_{30} 's APC voltage $\pm 50 \mathrm{mV}$ is impressed to pin 30 (APC Filter) while its voltage is being varied, measure frequency change of pin 35 output signal as frH or frL and calculate sensitivity according to the following equation. $\mathrm{b}=(\mathrm{frH}-\mathrm{frL}) / 100$

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)												
												MEASURING METHOD		
C_{11}	Killer Operation Input Level	OFF	A	B	B	B	A	A	A	A	B	(1) Connect band pass filter $(Q=2)$ and set to $T V$ mode $\left(f_{\mathrm{O}}=600 \mathrm{kHz}\right)$. (2) Set the crystal mode to conform to European, Asian system and set the gate to normal status. (3) Input 3 N color signal having $200 \mathrm{mV}_{\mathrm{p} \text {-p }}$ burst to pin 42 (Chroma IN). (4) While attenuating chroma input signal, measure input burst amplitudes of the signal when B-Y color difference output of pin 36 is discolored and when the same signal is colored. Measured input burst amplitudes shall be expressed as $3 \mathrm{~N}-\mathrm{VTK} 1$ and $3 \mathrm{~N}-\mathrm{VTC} 1$ respectively (killer operation input level). (5) Killer operation input level in the condition that P / N killer sensitivity is set to LOW with the bus control is expressed as $3 \mathrm{~N}-\mathrm{VTK} 2$ or $3 \mathrm{~N}-\mathrm{VTC} 2$. (6) Perform the same measurement as the above step 4 with different inputs of $4 \mathrm{~N}, 4 \mathrm{P}, \mathrm{MP}$, NP color signals having $200 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ burst to pin 42 (Chroma IN). (When measuring with MP / NP color signal, set the crystal system to conform to South American system.) (7) Killer operation input level at that time is expressed as follows. Normal killer operation input level in the 4 N system is expressed as 4 N -VTK1, 4N-VTC1. Normal killer operation input level in the 4P system is expressed as 4P-VTK1, 4P-VTC1. Killer operation input level with low killer sensitivity is expressed as 4P-VTK2, 4P-VTC2 Normal killer operation input level in the MP system is expressed as MP-VTK2, MP-VTC2. Normal killer operation input level in the NP system is expressed as NP-VTK1, NP-VTC1. Killer operation input level with low killer sensitivity is expressed as NP-VTK2, NP-VTC2.		

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)											
		SW MODE										MEASURING METHOD	
		S_{26}	S_{1}	S_{31}	S_{33}	S_{34}	S_{39}	S_{42}	S_{44}	S_{45}	S_{51}		
C_{12}	Color Difference Output	ON	A	B	B	B	A	A	A	A	B	6)	Activate the test mode (S26-ON, Sub Add $02 ; 08 \mathrm{~h}$). Connect band pass filter $(Q=2)$, set to $T V$ mode ($\mathrm{f}_{\mathrm{o}}=600 \mathrm{kHz}$) with OdB attenuation. Set the crystal mode to conform to European, Asian system and set the gate to normal status. Input $3 \mathrm{~N}, 4 \mathrm{~N}$ and 4 P rainbow color bar signals having $100 \mathrm{~m} \mathrm{~V}_{\mathrm{p} \text {-p }}$ burst to pin 42 of the chroma input terminal one after another. Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 ($R-Y$) respectively, and express them as 3 NeB-Y / R-Y, 4NeB-Y / R-Y and 4PeB-Y / R-Y respectively. While inputting 4P 75% color bar signal ($100 \mathrm{~m} V_{p-p}$ burst) to pin 42 of the chroma input terminal, measure amplitudes of color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively. (Ratio of those amplitudes is expressed as 4Peb-y / r-y for checking color level of SECAM system.)
C_{13}	Demodulation Relative Amplitude	\uparrow	(5)	Activate the test mode (S26-ON, Sub Add 02 ; 08h). Connect band pass filter $(Q=2)$, set to $T V$ mode ($f_{0}=600 \mathrm{kHz}$) with 0dB attenuation. Set the crystal mode to conform to European, Asian system and set the gate to normal status. Input $3 \mathrm{~N}, 4 \mathrm{~N}$ and 4 P rainbow color bar signals having $100 \mathrm{mV}_{\mathrm{p} \text {-p }}$ burst to pin 42 of the chroma input terminal one after another. Measure amplitudes of color difference signals of pin 36 (B-Y) and pin 35 (R-Y) respectively, and express ratio between the two amplitudes as 3NG R / B, 4NG R / B and 4PG R / B respectively. (Note) Relative amplitude of G-Y color difference signal shall be checked later in the Text section									

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{FsC} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
		S_{26}	S1	S_{31}	S_{33}	${ }_{\text {S }}$	S_{39}	S_{42}	S_{44}	S_{45}	S_{51}	MEASURING METHOD
C_{14}	Demodulation Relative Phase	ON	A	B	B	B	A	A	A	A	B	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h). (2) Connect band pass filter $(\mathrm{Q}=2)$, set to TV mode ($\mathrm{f}_{\mathrm{O}}=600 \mathrm{kHz}$) with 0 dB attenuation. (3) Set the crystal mode to conform to European, Asian system and set the gate to normal status. (4) Input $3 \mathrm{~N}, 4 \mathrm{~N}$ and 4 P rainbow color bar signals having $100 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ burst to pin 42 of the chroma input terminal one after another. (5) Measure phases of color difference signals of pin 36 ($B-Y$) and pin 35 ($R-Y$) respectively, and express them as $3 N \theta R-B, 4 N \theta R-B$ and $4 P \theta R-B$ respectively. (6) For measuring with 3 N and 4 N color bar signals in NTSC system, set six bars of the B-Y color difference waveform to the peak level with the Tint control and measure its phase difference from phase of $R-Y$ color difference signal of pin 35 (R-Y OUT). Note: Relative phase of G-Y color difference signal shall be checked later in the Text section
C_{15}	Demodulation Output Residual Carrier	\uparrow	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h). (2) Connect band pass filter $(Q=2)$, set to $T V$ mode ($f_{0}=600 \mathrm{kHz}$) with 0 dB attenuation. (3) Set the crystal mode to conform to European, Asian system. (4) Set the gate to normal status. (5) Input 3 N and 4 N rainbow color bar signals having $100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ burst to pin 42 of the chroma input terminal one after another. (6) Measure subcarrier leak of 3 N and 4 N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express those leaks as $3 \mathrm{~N}-\mathrm{SCB} / \mathrm{R}$ and $4 \mathrm{~N}-\mathrm{SCB} / \mathrm{R}$.									

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$)										
						SW	DE					MEASURING METHOD
		S_{26}	S_{1}	S_{31}	S_{33}	S_{34}	S_{39}	S_{42}	S_{44}	S_{45}	S_{51}	MEASURING METHOD
C_{16}	Demodulation Output Residual Higher Harmonic	ON	A	B	B	B	A	A	A	A	B	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h). (2) Connect band pass filter $(\mathrm{Q}=2)$, set to TV mode ($\mathrm{f}_{\mathrm{o}}=600 \mathrm{kHz}$) with 0 dB attenuation. (3) Set the crystal mode to conform to European, Asian system and set the gate to normal status. (4) Input 3 N and 4 N rainbow color bar signals having $100 \mathrm{~m} \mathrm{~V}_{\mathrm{p} \text {-p }}$ burst to pin 42 of the chroma input terminal one after another. (5) Measure higher harmonic ($2 \mathrm{f}_{\mathrm{C}}=7.16 \mathrm{MHz}$ or 8.87 MHz) of 3 N and 4 N color bar signals appearing in color difference signals of pin 36 (B-Y OUT) and pin 35 (R-Y OUT) respectively, and express them as $3 \mathrm{~N}-\mathrm{HCB} / \mathrm{R}$ and $4 \mathrm{~N}-\mathrm{HCB} / \mathrm{R}$.
C_{17}	Color Difference Output ATT Check	\uparrow	(1) Activate the test mode (S26-ON, Sub Add 02 ; 08h). (2) Connect band pass filter $(Q=2)$ and set bus data for the TV mode ($f_{\mathrm{O}}=600 \mathrm{kHz}$). (3) Set the X'tal clock mode to conform to European, Asian system and set the gate to normal status. (4) Input 3 N rainbow color bar signal whose burst is $100 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}$ to pin 42 of the chroma input terminal. (5) Measure amplitude of color difference output signal of pin 36 (B-Y OUT) with 0 dB attenuation set by the bus control. Set the amplitude of the color difference output of pin 36 (B-Y OUT) to 0 dB , and measure amplitude of the same with different attenuation of $-2 \mathrm{~dB},-1 \mathrm{~dB}$ and +1 dB set by the bus control.									

NOTE	ITEM										N (U	BUS:	s othe	R	CO	cified : H, RGB	$\left.V_{D D}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}\right)$
										BUS : NORMAL CONTROL MODE							MEASURING METHOD
			02H				07H			10 H						OTHER CONDITION	
			D_{5}	D_{2}	D_{1}	D_{0}	D_{7}	D_{4}	D_{3}	D_{5}	D4	D_{3}	D_{2}	D_{1}	D_{0}		
C_{18}	16.2 MHz Oscillation Frequency	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	-	(1) Input nothing to pin 42. (2) Measure frequency of CW signal of pin 35 as fr , and find oscillation frequency by the following equation.) $\Delta \mathrm{foF}=(\mathrm{fr}-0.05 \mathrm{MHz}) \times 4$
C_{19}	16.2 MHz Oscillation Start Voltage	ON	0	0	0	1	0	0	0	0	0	0	0	0	0	Impress pin 38 individually with separate power supply.	While raising voltage of pin 38 , measure voltage when oscillation waveform appears at pin 40 .
C_{20}	f_{sc} Free-Run Frequency	ON	0	0	0	1	0	0	0	0		Variabl		0	0	-	(1) Input nothing to pin 42. (2) Change setting of $\operatorname{SUB}(10 \mathrm{H}) \mathrm{D}_{4}, \mathrm{D}_{3}$ and D_{2} according to respective frequency modes, and measure frequency of CW signal of pin 35. $\begin{aligned} & \text { Detail of } D_{4}, D_{3} \text { and } D_{2} \\ & \begin{aligned} 3.58 M & =1:(001), \\ M-P A L & =6:(110), \end{aligned} \quad N-P A L=7:(111) \end{aligned}$
C_{21}	$\mathrm{fsc}_{\text {c }}$ Output Amplitude	OFF	0	0	0	0	0	0	0	0	0	0 \downarrow 1	1 \downarrow 0	0	0	-	(1) Input nothing to pin 42. (2) Change setting of $\operatorname{SUB}(10 H) D_{4}, D_{3}$ and D_{2} according to respective frequency modes. Measure the amplitude of output signal of pin 27.

DEF SECTION

NOTE	ITEM										
		SUB-ADDRESS \& BUS DATA									(1) MEASURING METHOD
DH1	H. Reference Frequency	Sub 02H	0	0	0	0	0	0	0	1	(1) Supply 5 V to pin 26. (2) Set bus data as indicated on the left. (3) Measure the frequency of sync. output of pin 49.
DH2	H. Reference Oscillation Start Voltage	Sub 02H	0	0	0	0	0	0	0	1	In the test condition of the Note DH1, turning down the voltage supplied to pin 26 from 5 V , measure the voltage when oscillation of pin 49 stops.
DH3	H. Output Frequency 1	Sub 10H	\times	0	\times	\times	\times	\times	0	1	(1) Set bus data as indicated on the left. (2) In the condition of the above step 1, measure frequency (TH1) at pin 4.
DH4	H. Output Frequency 2	Sub 10H	\times	0	\times	\times	\times	\times	1	0	(1) Set the input video signal of pin 51 to the 60 system. (2) Set bus data as indicated on the left. (3) In the above-mentioned condition, measure frequency (TH2) at pin 4.
DH5	H. Output Duty 1	-	-	-	-	-	-	-	-	-	(1) Supply 4.5 V DC to pin 5 (or, make pin 5 open-circuited). (2) Measure duty of pin 4 output.
DH6	H. Output Duty 2	-	-	-	-	-	-	-	-	-	(1) Make a short circuit between pin 5 and ground. (2) Measure duty of pin 4 output.
DH7	H. Output Duty Switching Voltage	-	-	-	-	-	-	-	-	-	Supply 2 V DC to pin 5 . While turning down the voltage from 2 V , measure voltage when the output duty ratio becomes 41 to 37%.
DH8	H. Output Voltage	-	-	-	-	-	-	-	-	-	Measure the low voltage and high voltage of pin 4 output whose waveform is shown below.
DH9	H. Output Oscillation Start Voltage	-	-	-	-	-	-	-	-	-	While raising $\mathrm{H} . \mathrm{V}_{\mathrm{CC}}($ pin 3) from 0 V , measure voltage when pin 4 starts oscillation.

NOTE	ITEM											
		SUB-ADDRESS \& BUS DATA										MEASURING METHOD
DV7 DV8	50 System VBLK Start Phase 50 System VBLK Stop Phase	Sub 1CH Sub 04H	0 \times	1 0	\times \times	\times \times \times		Input such a video signal of the 50 system as shown in the figure to pin 48. Set bus data as indicated on the left. Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.				
DV9	60 System VBLK Start Phase 60 System VBLK Stop Phase	Sub 1CH Sub 04H	0 \times	1 0	\times \times	\times \times \times	\times \times	\times	\times \times	\times \times		Input such a video signal of the 60 system as shown in the figure to pin 48. Set bus data as indicated on the left. Measure the VBLK start phase (X) and VBLK stop phase (Y) of pin 12.
DV11	V. Lead-In Range 1	$\begin{array}{ll}\text { Sub } & 16 \mathrm{H} \\ \text { Sub } & 19 \mathrm{H}\end{array}$	$\begin{aligned} & x \\ & x \end{aligned}$	x	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$					Set bus data as indicated on the left. Input 262.5 H video signal to pin 48. Set a certain number of field lines in which signals of pin 48 and pin 54 completely synchronize with each other as shown in the figure below. Decrease the field lines in number and measure number of lines in which pin 48 and pin 54 signals do not synchronize with each other. Again set a certain number of field lines in which pin 48 and pin 54 signals synchronize with each other. Increase the field lines in number and measure number of lines in which pin 48 and pin 54 signals do not synchronize with each other.

Deflection correction stage

NOTE	ITEM	TEST CONDITIONS (DEF $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS} \mathrm{DATA}=$ POWER-ON RESET)	
		$\begin{gathered} \hline \text { SW MODE } \\ \mathrm{SW}_{28} \end{gathered}$	MEASUREMENT METHOD
G_{1}	Vertical Ramp Amplitude	A	Measure the amplitude of the vertical ramp wave on \#49.
G_{2}	Vertical Amplification	A	Set \#53 and \#54 to open. Set the subaddress (17) data to (80). Connect \#54 to an external power supply. When the voltage is varied from 4.0 V to 6.0 V , measure the vertical amplification on the \#53 voltage. $\left(\mathrm{G}_{\mathrm{V}}\right)\left(\mathrm{V}_{\mathrm{H} 53}\right)\left(\mathrm{V}_{\mathrm{L} 53}\right)$
G_{3}	Vertical Amp Maximum Output Voltage	A	
G_{4}	Vertical Amp Minimum Output Voltage	A	
G_{5}	Vertical Amp Maximum Output Current	A	Set \#53 and \#54 to open. Apply 7 V to \#54 from an external source. Insert an ammeter between \#53 and GND, and measure the current.
G_{6}	Vertical NF Sawtooth Wave Amplitude	A	Measure the amplitude of the \#54 waveform (vertical sawtooth waveform).
G_{7}	Vertical Amplitude Range	A	When the subaddress (17) data are set to (MIN) and (MAX), measure the amplitudes of the \#54 waveform (vertical sawtooth waveform) $V_{P 54}(00)$ and $V_{\text {P54 (FC) }}$. $V_{P H}= \pm \frac{V_{P 54(F C)}-V_{P 54(00)}}{V_{P 54(F C)}+V_{P 54(00)}} \times 100(\%)$

NOTE	ITEM	TEST CONDITIONS (DEF $\mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)		
		$\begin{array}{\|c\|} \hline \text { SW MODE } \\ \hline \text { SW }_{28} \\ \hline \end{array}$	MEASUREMENT METHOD	
G_{8}	Vertical Linearity Correction Maximum Value	A	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_{7} \sim D_{4}$ so that the \#51 parabola waveform is symmetrical. When the subaddress (1A) data are (80), measure the \#54 waveform $V_{1 \text { (} 80 \text {) and }} V_{2}$ (80). Likewise, when the subaddress (0 F) data are (00) and (FO), measure $\mathrm{V}_{1}(00), \mathrm{V}_{2}(00), \mathrm{V}_{1}$ (F0), and V_{2} (FO). $V_{l}= \pm \frac{V_{1(00)}-V_{1(F 0)}+V_{2(F 0)}-V_{2(00)}}{2 \times\left(V_{1(80)}+V_{2(80)}\right)}$	\#51
G9	Vertical S Correction Maximum Value	A	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_{7} \sim D_{4}$ so that the \#51 parabola waveform is symmetrical. When the subaddress (1A) data are (80), measure the amplitude of the \#54 waveform $\mathrm{V}_{\mathrm{S} 54}$ (80). Likewise, when the subaddress (19) data are (87), measure the amplitude of the \#54 waveform $\mathrm{V}_{\mathrm{S} 54 \text { (87). }}$ $V_{S}= \pm \frac{V_{S 54(80)}-V_{S 54(87)}}{V_{S 54(80)}+V_{S 54(87)}} \times 100(\%)$	

NOTE	ITEM	TEST CONDITIONS ($\mathrm{DEF} \mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)		
		$\begin{array}{\|c\|} \hline \text { SW MODE } \\ \hline \text { SW }_{28} \\ \hline \end{array}$	MEASUREMENT METHOD	
G_{10}	Vertical NF Center Voltage	A	Set the subaddress data (19) to (F8). Change the subaddress (1B) $D_{7} \sim D_{4}$ so that the \#51 parabola waveform is symmetrical. Measure the center voltage V_{C} of the \#54 waveform.	
G_{11}	Vertical Amplitude EHT Correction	A	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_{7} \sim D_{4}$ so that the \#51 parabola waveform is symmetrical. Set the subaddress (1C) data to (40) and measure the amplitude of the \#54 waveform $\mathrm{V}_{\text {EHT }}$ (40). Set the subaddress (1C) data to (47) and measure the amplitude of the \#54 waveform $\mathrm{V}_{\text {EHT }}$ (47). $\mathrm{VEHT}=\frac{\mathrm{V}_{\mathrm{EHT}}(40)-\mathrm{V}_{\mathrm{EHT}}(47)}{\mathrm{V}_{\mathrm{EHT}}(40)} \times 100(\%)$	${ }^{2}$
G_{12}	EHT Dynamic Range	A	Set the subaddress data (19) to (F8). Change the subaddress (1B) $D_{7} \sim D_{4}$ so that the \#51 parabola waveform is symmetrical. Set the subaddress (1C) data to (47). Change \#28 input voltage at $1 \sim 7 \mathrm{~V}$ and measure the amplitude of the \#54 waveform.	

NOTE	ITEM	TEST CONDITIONS ($\mathrm{DEF} \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)	
		SW MODE	MEASUREMENT METHOD
G_{13}	E-W NF Maximum DC Value (Picture Width)		Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_{7} \sim D_{4}$ so that the \#22 parabola waveform is symmetrical. Set the subaddress (19) data to (80). Set the subaddress (18) data to (00) and measure the \#51 voltage $\mathrm{V}_{\mathrm{L} 51}$. Set the subaddress (18) data to (FE) and measure the \#51 voltage $\mathrm{V}_{\mathrm{H} 51}$.
G_{14}	E-W NF Minimum DC Value (Picture Width)		
G_{15}	E-W NF Parabola Maximum Value (Parabola)	B	Set the subaddress (18) data to (00) and the subaddress (19) data to (F8). Measure the amplitude of the \#51 waveform (parabola waveform) $V_{\text {PB }}$.

NOTE	ITEM	TEST CONDITIONS ($\mathrm{DEF} \mathrm{V}_{C C}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}, \mathrm{BUS}$ DATA $=$ POWER-ON RESET)	
		$\begin{array}{\|c} \hline \text { SW MODE } \\ \hline S_{28} \\ \hline \end{array}$	MEASUREMENT METHOD
G_{16}	E-W NF Corner Correction (Corner)	B	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_{7} \sim D_{4}$ so that the \#51 parabola waveform is symmetrical. Set the subaddress (1B) $D_{3} \sim D_{0}$ to (0) and measure the amplitude of the \#51 waveform $V_{C R}$ (0). Likewise, when the subaddress (1B) data are set to (F), measure the \#51 waveform amplitude $V_{C R(F)}$. $V_{C R}=V_{C R(0)}-V_{C R(F)}$
G_{17}	Parabola Symmetry Correction	A	Set the subaddress (1B) data to (08) and measure the vertical NF center voltage of the \#54 waveform $\mathrm{V}_{\mathrm{C}}(00)$. Likewise, when the subaddress (1B) data are set to (F8), measure the \#54 waveform V_{C} (FC). $V_{T R}= \pm \frac{V_{C(00)}-V_{C(F C)}}{2 \times V_{P 54}} \times 100(\%)$
G_{18}	E-W Parabola EHT Value	-	Set the subaddress (19) data to (F8). Change the subaddress (1B) $\mathrm{D}_{7} \sim \mathrm{D}_{4}$ so that the \#51 parabola waveform is symmetrical. Set the subaddress data (1C) to (40). While suppling 1.0 V to pin 28 , measure amplitude V_{EH} (1) at pin 51 .While suppling 7.0 V to pin 28 , measure amplitude $\vee_{\mathrm{EH}}(7)$ at pin 51. $V_{E H} 1=\frac{V_{E H}(7)-V_{E H}(1)}{V_{E H}(7)} \times 100(\%)$

NOTE	ITEM	TEST CONDITIONS (DEF $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}, \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C}$, BUS DATA $=$ POWER-ON RESET)	
		$\begin{gathered} \hline \text { SW MODE } \\ \hline \text { SW }_{28} \\ \hline \end{gathered}$	MEASUREMENT METHOD
G_{19}	E-W DC EHT Value	A	Set the subaddress (19) data to (F8). Change the subaddress (1B) $D_{7} \sim D_{4}$ so that the \#51 parabola waveform is symmetrical. Set the subaddress (1C) data to (40) and measure amplitude $\mathrm{V}_{\mathrm{EH}}(40)$ at pin 51. Set the subaddress (1C) data to (78) and measure amplitude $\mathrm{V}_{\mathrm{EH}}(78)$ at pin 51. $V_{E H} 2=V_{E H}(78)-V_{E H}(40)(V)$
G_{20}	E-W Amp Maximum Output Current	A	Connect an ammeter between \#52 and GND. Measure the current.
G_{21}	AGC Operating Current 1	A	Measure the \#2 waveform peak value. (VAGCO) Set the subaddress (0F) D_{0} to (1) and repeat the measurement. ($\mathrm{V}_{\mathrm{AGC}}$) $I_{A G C 0}=V_{X} \div 200(\mu \mathrm{~A})$ (IAGC1)
G_{22}	AGC Operating Current 2	A	
G_{23}	Vertical Guard Voltage	A	Set \#54 to open. Connect an external power supply to \#54. Decrease the voltage from 5 V . When full blanking is applied to \#14, measure the voltage.
G_{24}	V NFB Pin Input Current	A	Connect a $9-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ via a $100-\mathrm{k} \Omega$ resistor to \#54. Measure the sink current on \#54 according to the voltage difference of the $100-\mathrm{k} \Omega$ resistance. $I_{54}=\mathrm{V} / 100 \mathrm{k} \Omega$

1H DL SECTION

NOTE	ITEM						
		SW MODE	SUB ADDRESS \&DATA			MEASURING METHOD	
		S26	07H	OFH	11H		
H_{1}	1HDL Dynamic Range Direct	ON	94H	-	-		Input waveform 1 to pin 33 (B-Yin), and measure VNBD, that pin 36 (B -Yout) is saturated input level. Measure VNRD of R-Y input in the same way as VNBD. $\begin{aligned} & \text { Waveform1 } \curvearrowleft \sqrt{n} \sqrt{f}=100 \mathrm{kHz} \text { (typ) } \\ & \text { H.BLK } \square \square \end{aligned}$
H_{2}	1HDL Dynamic Range Delay	\uparrow	8CH	-	-		Input waveform 1 to pin 33 (B-Yin), and measure VPBD, that pin 36 (B-Yout) is saturated input level. Measure VPRD of R-Y input in the same way as VPBD.
H_{3}	1HDL Dynamic Range,Direct + Delay	\uparrow	A4H	-	-		Input waveform 1 to pin 33 (B-Yin), and measure VSBD, that pin 36 (B-Yout) is saturated input level. Measure VNRD of R-Y input in the same way as VSBD.
H_{4}	Frequency Characteristic, Direct	\uparrow	94H	-	-		In the same measuring as H_{1}, set waveform 1 to $0.3 V_{p-p}$ and $f=100 \mathrm{kHz}$. Measure VB100, that is pin 36 ($B-Y o u t$) level. And set waveform 1 to $\mathrm{f}=700 \mathrm{kHz}$. Measure VB700, that is pin 36 (B-Yout) level. $\text { GHB1 = } 20 \log (V B 700 / V B 100)$ Measure GHR1 of R-Y out in the same way as GHB1.
H_{5}	Frequency Characteristic, Delay	\uparrow	8CH	-	-		In the same measuring as H_{1}, set waveform 1 to $0.3 V_{p-p}$ and $f=100 \mathrm{kHz}$. Measure VB100, that is pin 36 (B-Yout) level. And set waveform 1 to $\mathrm{f}=700 \mathrm{kHz}$. Measure VB700, that is pin 36 ($\mathrm{B}-\mathrm{Yout)} \mathrm{level}$. $\text { GHB2 = } 20 \log (V B 700 / V B 100)$ Measure GHR2 of R-Y out in the same way as GHB2.
H_{6}	AC Gain Direct	\uparrow	94H	-	-		$\text { GBY }_{1}=20 \log (\text { VByt1 / 0.7 })$ Measure GRY1 of R-Y out in the same way as GBY1.
H_{7}	AC Gain Delay	\uparrow	8CH	-	-		$\mathrm{GBY}_{2}=20 \log (\mathrm{VByt} 2 / 0.7)$ Measure GRY2 of R-Y out in the same way as GBY2.

NOTE	ITEM						
		SW MODE	SUB ADDRESS \&DATA			MEASURING METHOD	
		S26	07H	OFH	11H		
H_{8}	Direct • Delay AC Gain Difference	\uparrow	$\begin{aligned} & 94 \mathrm{H} \\ & 8 \mathrm{CH} \end{aligned}$	-	-		$\begin{aligned} & \mathrm{GBYD}=\mathrm{GBY} 1-\mathrm{GBY} 2 \\ & \mathrm{GRYD}=\mathrm{GRY} 1-\mathrm{GRY} 2 \end{aligned}$
H_{9}	Color Difference Output DC Stepping	\uparrow	8CH	-	-		Measure pin 36 (B-Yout) DC stepping of the picture period. Measure pin 35 (R-Yout) DC stepping of the picture period.
H_{10}	1H Delay Quantity	ON	8CH	-	-		Input waveform 2 to pin 33 ($B-Y i n$). And measure the time deference BDt of pin 36 ($B-Y o u t$). Input waveform 2 to pin 34 (R-Yin). And measure the time diference RDt of pin 36 (B-Yout).
H_{11}	Color Difference Output DC-Offset Control	\uparrow	8CH	2 H	OOH 88H FFH		Set Sub-Address 11 h ; data 88h. Measure the pin 36 DC voltage, that is BDC1. Set Sub-Address 11 h ; data 88 h . Measure the pin 35 DC voltage, that is RDC1. Set Sub-Address 11 h ; data 00h. Measure the pin 36 DC voltage, that is BDC2. Set Sub-Address 11 h ; data 00 h . Measure the pin 35 DC voltage, that is RDC2. Set Sub-Address 11 h ; data FFh. Measure the pin 36 DC voltage, that is BDC3. Set Sub-Address 11 h ; data FFh. Measure the pin 35 DC voltage, that is RDC3. Bomin $=$ BDC2 - BDC1, Bomax $=B D C 3-$ BDC1, Romin $=$ RDC2 - RDC1, Romax $=$ RDC3 - RDC1
H_{12}	Color Difference Output DC-Offset Control / Min. Control Quantity	\uparrow	A4H	00H	89H		Measure the pin 36 DC voltage, that is BDC4. Measure the pin 35 DC voltage, that is RDC4. Bo1 = BDC4 - BDC1, Ro1 = RDC4 - RDC1.
H_{13}	NTSC Mode Gain / NTSC-COM Gain	\uparrow	94H	80H	-		Input waveform 1, that is set $0.3 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ and $\mathrm{f}=100 \mathrm{kHz}$, to pin 33 . Measure pin 36 output level, that is VBNC. $\text { GNB = } 20 \text { log (VBNC / VB100) }$ In the same way as (1) and (2), measure the pin 36 output level, that is VRNC. $\text { GNR = } 20 \text { log (VRNC / VR100) }$

TEXT SECTION

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
		S_{21}	S_{22}	S_{31}	SW MODE					-	00H	02H	-	-	-	-	MEASURING METHOD
T_{1}	Y Color Difference Clamping Voltage	B	B	B	B	B	A	-	-	-	FFH	OOH	-	-	-	-	(1) Short circuit pin $31(\mathrm{Y} \operatorname{IN})$, pin $34(\mathrm{R}-\mathrm{Y} \operatorname{IN})$ and pin 33 (B-Y IN) in AC coupling. (2) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (3) Measure voltage at pin 31, pin 34 and pin 33 (V cp31, Vcp 34 , V ср33).
T_{2}	Contrast Control Characteristic	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	$\begin{aligned} & \mathrm{FFH} \\ & 80 \mathrm{H} \\ & 00 \mathrm{H} \end{aligned}$	OOH	-	-	-	-	(1) Input TG7 sine wave signal whose frequency is 100 kHz and video amplitude is 0.7 V to pin31 (Y IN). (2) Input 0.3 V Synchronizing Signal to pin 48 (Sync IN). (3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that Y sub contrast and drive are set at each center value and color is minimum. (5) Varying data on contrast from maximum (FF) to minimum (00), measure maximum and minimum amplitudes of respective outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT) in video period, and read values of bus data at the same time. Also, measure the respective amplitudes with the bus data set to the center value (80) (Vc12mx, Vc12mn, D12c80) (Vc13mx, Vc13mn, D13c80) (Vc14mx, Vc14mn, D14c80) (6) Find ratio between amplitude with maximum unicolor and that with minimum unicolor in conversion into decibel ($\Delta \mathrm{V} 13 \mathrm{ct})$.
T_{3}	AC Gain	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	In the test condition of Note T_{2}, find output / input gain (double) with maximum contrast. $G=V c 13 m x / 0.7 V$

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
		S_{21}	S_{22}	S_{31}	S_{3}	S_{34}	${ }_{5}$	-	-	-	00H	02H	-	-	-	-	MEASURING METHOD
T_{4}	Frequency Characteristic	B	B	B	B	B	A	-	-	-	FFH	OOH	-	-	-	-	(1) Input TG7 sine wave signal whose frequency is 6 MHz and video amplitude is 0.7 V to $\operatorname{pin} 31(\mathrm{Y} \mathrm{N})$.
																	(2) Input 0.3 V synchronizing signal to pin 48 (Sync IN).
																	(3) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground.
																	(4) Set bus data so that contrast is maximum, Y sub contrast and drive are set at each center value and color is minimum.
																	(5) Measure amplitude of pin 13 signal (G OUT) and find the output / input gain (double) (G6M).
																	(6) From the results of the above step 5 and the Note T_{3}, find the frequency characteristic.
																	$\mathrm{Gf}=20 \log (\mathrm{G} 6 \mathrm{M} / \mathrm{G})$

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
		SW MODE									SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{21}	S_{22}	S_{31}	S_{33}	S34	S_{51}	S_{42}	-	-	0 OH	02H	05H	1 CH	08H	1DH	
T5	Y Sub-Contrast Control Characteristic	B	B	B	B	B	A	-	-	-	FFH	00H	$\left\|\begin{array}{c} 1 \mathrm{FH} \\ 00 \mathrm{H} \end{array}\right\|$	-	-	-	(1) Connect both pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (2) Input TG7 sine wave signal whose frequency is 100 kHz and video amplitude is 0.7 V to pin $31(\mathrm{Y} \mathrm{IN})$.
																	(3) Input 0.3 V synchronizing signal to pin 48 (Sync IN).
																	(4) Set bus data so that contrast is maximum, drive is set at center value and color is minimum.
																	(5) Set bus data on Y sub contrast at maximum (FF) and measure amplitude (Vscmx) of pin 14 output (R OUT). Then, set data on Y sub contrast at minimum (00), measure the same (Vscmn).
																	(6) From the results of the above step 5 , find ratio between Vscmx and Vscmn in conversion into decibel (Δ Vscnt).
T6	Y_{2} Input Level	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	\uparrow	-	-	80 H	44H	3FH	(1) Set bus data so that contrast is maximum, Y sub contrast and drive are at each center value.
																	(2) Input 0.3 V synchronizing signal to pin 48 while inputting TG7 sine wave signal whose frequency is 100 kHz to pin 31 (TY IN).
																	(3) While increasing the amplitude of the sine wave signal, measure video amplitude of signal 1 just before R output of pin 14 is distorted. (Vy2d)

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\text {DD }}, \mathrm{FsC} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
						MOD						UB-ADD	DRESS	S \& BU	S DAT		MEASURING METHOD
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	S42	-	-	OOH	02H	1 CH	1DH	-	-	MEASURING METHOD
T_{10}	Relative Amplitude (PAL)	B	B	A	A	A	A	A	-	-	FFH	-	80H	3FH	-	-	While inputting rainbow color bar signal (4.43 MHz for PAL) to pin 42 and 0.3 V synchronizing signal to pin 48 so that video amplitude of pin 33 is $0.38 \mathrm{Vp}-\mathrm{p}$, find the relative amplitude. (Mpr-b = Vu14mx / Vu12mx, Mpg-b = Vu13mx / Vu12mx)
T_{11}	Relative Phase (PAL)	\uparrow	-	-	\uparrow	-	-	-	-	$-$	(1) In the test condition of the Note T_{10}, adjust bus data on tint so that output of pin 12 (B OUT) has the peak level in the 6th bar. (2) Regarding the phase of pin 12 (B OUT) as a reference phase, find comparative phase differences of pin 14 (R OUT) and pin 13 (G OUT) from the reference phase respectively ($\theta \mathrm{pr}-\mathrm{b}, \theta \mathrm{pg}-\mathrm{b}$).						
T_{12}	Color Control Characteristic	\uparrow	\uparrow	B	B	B	\uparrow	-	-	-	\uparrow	FFH	\uparrow	-	-	-	(1) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (2) Input $100 \mathrm{kHz}, 0.1 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ sine wave signal to both pin 33 (B-Y IN) and pin 34 ($R-Y \operatorname{IN}$). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that unicolor is maximum, drive is at center value and Y mute is on. (5) Measure amplitude of pin 12 (B OUT) as bus data on color is set maximum (FF). (Vcmx) (6) Read bus data when output level of pin 12 is $10 \%, 50 \%$ and 90% of Vcmx respectively (Dc10, Dc50, Dc90).
T_{13}	Color Control Characteristic, Residual Color	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	\uparrow	00H	\uparrow	-	-	$-$	(7) From results of the above step 6 , calculate number of steps from Dc10 to Dc90 ($\Delta \mathrm{col}$) and that from 00 to Dc50 (ecol). (8) Measure respective amplitudes of pin 12 (B OUT), pin 13 (G OUT) and pin 14 (R OUT) with color data set at minimum, and regard the results as color residuals (ecb, ecg, ecr).

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{CV} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)																
		SW MODE									SUB-ADDRESS \& BUS DATA						MEASURING METHOD	
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	01H	05H	-	-	-	-		
T_{15}	Brightness Control Characteristic	B	B	B	B	B	A	-	-	-	$\left\|\begin{array}{c} \mathrm{FFH} \\ \mathrm{OOH} \end{array}\right\|$	10H	-	-	-	-	(1) Short circuit pin $31(\mathrm{Y} I \mathrm{~N})$, pin $33(\mathrm{~B}-\mathrm{Y} \operatorname{IN})$ and pin $34(\mathrm{R}-\mathrm{Y} \operatorname{IN})$ in AC coupling. (2) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (3) Set bus data so that R, G, B cut off data are set at center value. (4) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (5) While changing bus data on brightness from maximum to minimum, measure video voltage of pin 13 (G OUT) to find maximum and minimum voltages (max : Vbrmx, min : Vbrmn). (6) With bus data on brightness set at center value, measure video voltage of pin 13 (G OUT) (Vbcnt).	
T_{16}	Brightness Center Voltage	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	80H	\uparrow	-	-	-	-		
T_{17}	Brightness Data Sensitivity	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(7)	On the conditon that bus data with which Vbrmx is obtained in measurement of the above step 5 is Dbrmx and bus data with which Vbrmn is obtained in measurement of the above step 5 is Dbrmn, calculate sensitivity of brightness data ($\Delta \mathrm{Vbrt}$). $\Delta \mathrm{Vbrt}=(\mathrm{Vbrmxg}-\mathrm{Vbrmng}) /(\mathrm{Dbrmxg}-\mathrm{Dbrmng})$
T_{18}	RGB Output Voltage Axes Difference	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(1) In the same manner as the Note T_{16}, measure video voltage of pin 12 (B OUT) with bus data on brightness set at center value. (2) Find maximum axes difference in the brightness center voltage.	
T_{19}	White Peak Limit Level	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	OOH	1FH	-	-	-	-	(1) Set bus data so that contrast and Y sub contrast are maximum and brightness is minimum. (2) Input TG7 sine wave signal whose frequency is 100 kHz and amplitude in video period is 0.9 V to pin 31 ($\mathrm{Y} \operatorname{IN}$). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) While turning on / off WPL with bus, measure video amplitude of pin 14 (R OUT) with WPL	

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{CV} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
		SW MODE									SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	01H	05H	08H	OCH	ODH	OEH	
T_{26}	Blanking Pulse Output Level	B	B	B	B	B	A	-	-	-	80H	10H	04H	80H	80H	80H	(1) Input synchronizing signal of 0.3 V in amplitude to pin 48 (Sync IN). (2) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (3) Set bus data so that blanking is on. (4) Measure voltage of pin 13 (G OUT) in V. blanking period (Vy). (5) Measure voltage of pin 13 (G OUT) in H. blanking period (Vh).
T_{27}	Blanking Pulse Delay Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	In the setting condition of the Note T_{26}, find "tdon" and "t $\mathrm{t}_{\text {doff" }}$ (see figure below) between the signal impressed to pin 6 (BFP IN) and output signal of pin 13 (G OUT).
T_{28}	RGB Min. Output Level	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	OOH	\uparrow	\uparrow	OOH	OOH	OOH	(1) Short circuit pin 31 ($\mathrm{Y} \operatorname{IN}$), pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. (2) Input synchronizing signal of 0.3 V in amplitude to pin 48 (Sync IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that brightness and RGB cutoff are minimum. (5) Measure video voltage of pin 13 (G OUT) (Vmn).
T_{29}	RGB Max. Output Level	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	80H	1fH	44H	80H	80H	80H	(1) Short circuit pin 33 (B-Y IN) and pin 34 (R-Y IN) in AC coupling. (2) Input stepping signal to pin $31(\mathrm{Y} I \mathrm{~N})$ and synchronizing signal of 0.3 V in amplitude to pin 48 (Sync IN). (3) Connect pin 21 (Digital Ys) and pin 22 (Analog Ys) to ground. (4) Set bus data so that contrast and Y sub contrast are maximum. (5) While increasing amplitude of the stepping signal, measure maximum output level just before video signal

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{FsC} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{CV} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
		SW MODE									SUB-ADDRESS \& BUS DATA						MEASURING METHOD
		S_{18}	S_{19}	S_{20}	S_{21}	S_{22}	S_{31}	S_{33}	S_{51}	-	15H	04H	-	-	-	-	
T_{34}	Text RGB Output, High Level	A	A	A	A	B	B	B	A	-	02H	40H	-	-	-	-	(1) Input stepping signal whose amplitude is 0.3 V in video period to pin 31 (Y IN) and pin 48 (Sync IN). (2) Set bus data so that blanking and halftone are off. (3) Connect power supply to pin 21 (Digital Ys). While impressing 0 V to it, measure pedestal level of pin 13 output signal (G OUT) (Vpl13). (4) Connect power supply to pin 19 (Digital G IN) and impress it with 2 V.
T_{35}	OSD Ys ON, Low Level	\uparrow	-	\uparrow	\uparrow	-	-	-	$-$	(5) Raising supply voltage to pin 21 gradually from 0 V , measure video level of pin 21 after output signal of pin 13 changed (VIx13). (6) From measurement results of the above steps 3 and 5, calculate high level in the text mode. $V m t 13=V t x 13-V p t 13$ (7) Raising supply voltage to pin 21 further from that in the step 5 , measure level (Vtost) of pin 21 when the level of pin 13 output signal changes from that in the step 5 to -6 dB as halftone data is set to ON (the 6th step of Notes T_{30} to T_{34}).							
		\uparrow	-	\uparrow	\uparrow	-	-	-	-								
T_{36}	OSD RGB Output, High Level																(8) In the condition of the above step 7, raise voltage impressed to pin 19 to 3 V and measure output voltage of pin 13 (Vos13). (9) From results of the above steps 3 and 7, calculate high level of the output in the OSD mode. Vmos13 = Vos13 - Vpt13

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{CV} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
																	MEASURING METHOD
		S_{18}	S_{19}	S_{20}	S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	-	-	-	MEASURING METHOD
T_{39}	OSD Mode Switching Rise-Up Time	A	A	A	A	B	B	B	B	A	-	-	-	-	-	$-$	(1) Input a Signal Shown by (a) in the following figure to pin 21 (Digital Ys). (2) According to (b) in the figure, measure TRosd, $^{\text {tpRos }}$, TFosd and tpFos for output signals of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT) respectively.
T40	OSD Mode Switching Rise-Up Transfer Time	\uparrow	-	-	-	-	-	-	(3) Find maximum values of tpRos and tpFos respectively ($\Delta t_{\text {PRos }}$, Δ tpFos).								
T_{41}	OSD Mode Switching Rise-Up Transfer Time, 3 Axes Difference	\uparrow	-	-	-	-	-	-	(a)								
T_{42}	OSD Mode Switching Breaking Time	\uparrow	-	-	-	-	-	-	(b)								
T_{43}	OSD Mode Switching Breaking Transfer Time	\uparrow	-	-	-	-	-	-									
T_{44}	OSD Mode Switching Breaking Transfer Time, 3 Axes Difference	\uparrow	-	-	-	-	-	-									

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGBB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{CV} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	06H	- -	-	-	-	-	MEASURING METHOD
T52	Analog RGB AC Gain	B	A	B	B	B	A	-	-	-	-	-	-	-	-	-	In the setting condition of the Note T_{52}, calculate output / input gain (double) with contrast data being set maximum. $G=V c 13 m \times / 0.5 \mathrm{~V}$
T_{53}	Analog RGB Frequency Characteristic	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	FFH	-	-	-	-	-	(1) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (2) Supply 5 V of external supply voltage to pin 22 (Analog Ys). (3) Input TG7 sine wave signal ($\mathrm{f}=100 \mathrm{kHz}$, video amplitude $=0.5 \mathrm{~V}$) to pin 24 (Analog G IN). (4) Set bus data so that contrast is maximum and drive is set at center value. (5) Measure video amplitude of pin 13 (G OUT) and calculate output / input gain (double) (G6M). (6) From measurement results of the above step 5 and the preceding Note 53, find frequency characteristic. $G f=20 \log (G 6 M / G)$

NOTE	ITEM										ecified	: H,	GB	C =	; V	, Fsc	$\mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{CV} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)
											SUB-ADDRESS \& BUS DATA						MEASURING METHOD
											-	-	-	-	-	-	
T59	Analog RGB Switching Rise-Up Time	B	A	B	B	B	A	-	-	-	-	-	-	-	-	-	(1) Supply signal ($2 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$) shown by (a) in the following figure to pin 22 (Analog Ys). (2) Referring to (b) of the following figure, measure TRana, tpRan, ${ }^{T}$ Fana and tpFan for outputs of pin 14 (R OUT), pin 13 (G OUT) and pin 12 (B OUT).
T60	Analog RGB Switching Rise-Up Transfer Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(3) Find maximum values of tpRan and $t_{\text {PFan }}$ respectively ($\Delta t_{\text {PRan }}$, Δ tpFan).
T_{61}	Analog RGB Switching Rise-Up Transfer Time, 3 Axes Difference	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	$20 \mathrm{~ns}: 20 \mathrm{~ns}: 150 \mathrm{~ns}: 20 \mathrm{~ns} \text { : }$
T62	Analog RGB Switching Breaking Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	
T_{63}	Analog RGB Switching Breaking Transfer Time	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	
T64	Analog RGB Switching Breaking Transfer Time, 3 Axes Difference	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	

NOTE	ITEM	TEST CONDITIONSW MODE									SUB-ADDRESS \& BUS DATA						DD, Y
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	S	-	-	-	-	A	
T_{71}	TV-Analog RGB Crosstalk	B	A	B	B	B	A	-	-	-	-	-	-	-	-	-	(1) Input TG7 sine wave signal ($f=4 \mathrm{MHz}$, video amplitude $=0.5 \mathrm{~V}$) to pin 31 ($\mathrm{Y}_{2} \mathrm{IN}$). (2) Short circuit pin 25 (Analog G IN) in AC coupling. (3) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (4) Set bus data so that contrast is maximum, Y sub contrast and drive are set at center value. (5) Supply pin 22 (Analog Ys) with 0 V of external power supply. (6) Measure video voltage of output signal of pin 13 (G OUT) (Vtg). (7) Supply pin 22 (Analog Ys) with 2 V of external power supply. (8) Measure video voltage of output signal of pin 13 (G OUT) (Vana). (9) From measurement results of the above steps 5 and 7, calculate crosstalk from TV to analog RGB. Crtva $=20$ log (Vana / Vtv)
T_{72}	Analog RGB-TV Crosstalk	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(1) Short circuit pin $31\left(Y_{2} I N\right)$, pin $34(R-Y I N)$ and pin $33(B-Y I N)$ in AC coupling. (2) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (3) Set bus data so that contrast is maximum and drive is set at center value. (4) Input TG7 sine wave signal ($\mathrm{f}=4 \mathrm{MHz}$, video amplitude $=0.5 \mathrm{~V}$) to pin 24 (Analog G IN). (5) Supply pin 22 (Analog Ys) with 0 V of external power supply. (6) Measure video voltage of output signal of pin 13 (G OUT) (Vant). (7) Supply pin 22 (Analog Ys) with 2 V of external power supply. (8) Measure video voltage of output signal of pin 13 (G OUT) (Vtan). (9) From measurement results of the above steps 6 and 8, calculate crosstalk from analog RGB to TV. $\text { Crant = } 20 \log (\text { Vant } / \text { Vtan })$

NOTE	ITEM	TEST CONDITION (Unless otherwise specified : $\mathrm{H}, \mathrm{RGB} \mathrm{V}_{C C}=9 \mathrm{~V} ; \mathrm{V}_{\mathrm{DD}}, \mathrm{Fsc} \mathrm{V}_{\mathrm{DD}}, \mathrm{Y} / \mathrm{C} \mathrm{V}_{C C}=5 \mathrm{~V} ; \mathrm{Ta}=25 \pm 3^{\circ} \mathrm{C} ; \mathrm{BUS}=$ preset value)															
						S ${ }^{\text {S }}$						\| $15{ }^{\text {d }}$	DRES	\& BU	S DAT		MEASURING METHOD
		S_{21}	S_{22}	S_{31}	S_{33}	S_{34}	S_{51}	-	-	-	01H	15H	-	-	-	-	MEASURINGMETHOD
T_{73}	ABL Point Characteristic	B	B	B	B	B	A	-	-	-	FFH	$\begin{aligned} & 10 \mathrm{H} \\ & 90 \mathrm{H} \\ & \mathrm{FOH} \end{aligned}$	-	-	-	-	(1) Input TG7 sine wave signal ($\mathrm{f}=4 \mathrm{MHz}$, video amplitude $=0.5 \mathrm{~V}$) to pin $31\left(Y_{2} \mathrm{~N}\right)$. (2) Short circuit pin 23 (Analog R IN), pin 25 (Analog G IN) and pin 26 (Analog BIN) in AC coupling. (3) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (4) Set bus data so that brightness is maximum and ABL gain is at center value, and supply pin 16 with external supply voltage. While turning down voltage supplied to pin 16 gradually from 7 V , measure voltage at pin 16 when the voltage supplied to pin 12 decreases by 0.3 V in three conditions that data on ABL point is set at minimum, center and maximum values respectively. (Vablpl, Vablpc, Vablph)
T_{74}	ACL Characteristic	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	-	-	-	-	-	-	(1) Input TG7 sine wave signal ($\mathrm{f}=4 \mathrm{MHz}$, video amplitude $=0.5 \mathrm{~V}$) to pin $31\left(\mathrm{Y}_{2} \mathrm{IN}\right)$. (2) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (3) Measure video amplitude at pin 12. (Vacl1) (4) Measure DC voltage at pin 16 (ABCL). (5) Supply pin 16 with a voltage that the voltage measured in the above step 4 minus 2 V . (6) Measure video amplitude at pin 12 (Vacl2) and its ratio to the amplitude measured in the above step 3. $\text { Vacl }=20 \log (\mathrm{Vacl} 2 / \mathrm{Vacl} 1)$
T_{75}	ABL Gain Characteristic	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	-	-	-	FFH	$\left\|\begin{array}{l} 00 \mathrm{H} \\ 10 \mathrm{H} \\ 1 \mathrm{CH} \end{array}\right\|$	-	-	-	-	(1) Short circuit pin $31\left(\mathrm{Y}_{2} \mathrm{IN}\right)$, pin $34(\mathrm{R}-\mathrm{Y} \operatorname{IN})$ and pin $33(\mathrm{~B}-\mathrm{Y} \operatorname{IN})$ in AC coupling. (2) Input 0.3 V synchronizing signal to pin 48 (Sync IN). (3) Set bus data on brightness at maximum and measure video DC voltage at pin 12 (Vmax). (4) Measure voltage at pin 16 which is being supplied with the voltage measured in the step 5 of the preceding Note 75. (5) Changing setting of bus data on ABL gain at minimum, center and maximum values one after another, measure video DC voltage at pin 12. (Vabl1, Vabl2, Vabl3) (6) Find respective differences of Vabl1, Vabl2 and Vabl3 from the voltage measured in the above step 3. $\begin{aligned} & \text { Vabll }=\text { Vmax }- \text { Vabl1 } \\ & \text { Vablc }=\text { Vmax }- \text { Vabl2 } \\ & \text { Vablh }=\text { Vmax }- \text { Vabl3 } \end{aligned}$

SECAM SECTION

NOTE	ITEM								BuS																	$25 \pm 3^{\circ} \mathrm{C}$)		
									MEASURING METHOD																			
									OFH	10 H							1 FH											
		26	D_{4}	D_{3}	D_{2}	D_{7}	D_{5}	D_{4}			D_{4}	D_{7}	D_{5}	D_{4}	D_{3}	D_{2}	D1	D_{0}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}		
S_{1}	Bell Monitor Output Amplitude	ON	0	1	0	0	0	0			1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	(1)	Input $200 \mathrm{mV} \mathrm{V}_{\mathrm{p}-\mathrm{p}}$ (R-Y ID), 75\% chroma color bar signal (SECAM system) to pin 42. Measure amplitude of R-Y ID output of pin 36 as ebmo.
S_{2}	Bell Filter f_{0}	\uparrow	(1)	While supplying 20 mV p-p CW sweep signal from network analyzer to pin 42 and monitoring output signal of pin 36 with the network analyzer, measure frequency having maximum gain as foBEL of the bell frequency characteristic. Find difference between foBEL and 4.286 MHz as foB-C.																								
S_{3}	Bell Filter f_{o} Variable Range	\uparrow	Vari-	Vari-	(1)	The same procedure as the steps 1 and 2 of the Note S_{2}. Measure foBEL in different condition that SUB (IF) $D_{1} D_{0}=(00)$ or (11), and find difference of each measurement result from 4.286 MHz as foB-L or foB-H.																						
S_{4}	Bell Filter Q	\uparrow	0	1	(2)	The same procedure as the step 1 of the Note S_{2}. While monitoring output signal of pin 36 with network analyzer, measure Q of bell frequency characteristic as QBEL. QBEL = (QMAX -3 dB band width) / FoBEL																						
S_{5}	Color Difference Output Amplitude	OFF	-	-	-	-	-	-	0	\uparrow	(1)	Input $200 \mathrm{mV}_{\text {p-p }}$ (R-Y ID), 75% chroma color bar signal (SECAM system) to pin 42.																
S_{6}	Color Difference Relative Amplitude	\uparrow	-	-	-	-	-	-	\uparrow	(3)	Measure color difference levels VRS and VBS with signals of pin 35 and pin 36 . Calculate relative amplitude from VRS / VBS.																	

TEST CIRCUIT

APPLICATION CIRCUIT

PACKAGE DIMENSIONS

SDIP56-P-600-1.78

Weight: 5.55 g (Typ.)

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

