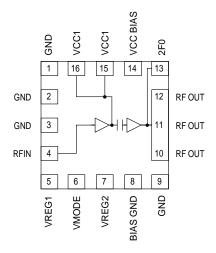


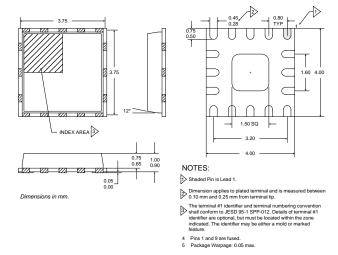
Typical Applications

3V CDMA/AMPS Cellular Handsets

Preliminary


- 3V JCDMA/TACS Cellular Handsets
- 3V TDMA/AMPS Cellular Handsets
- Spread-Spectrum Systems
- CDPD Portable Data Cards
- Portable Battery-Powered Equipment

Product Description


The RF2162 is a high-power, high-efficiency linear amplifier IC targeting 3V handheld systems. The device is manufactured on an advanced Gallium Arsenide Heterojunction Bipolar Transistor (HBT) process, and has been designed for use as the final RF amplifier in dual-mode 3V CDMA/AMPS hand-held digital cellular equipment, spread-spectrum systems, and other applications in the 800MHz to 960MHz band. The RF2162 has an analog bias control voltage to maximize efficiency. The device is self-contained with 50Ω input and the output can be easily matched to obtain optimum power, efficiency, and linearity characteristics. The device is packaged in a compact 4mmx4mm, 16-pin, leadless chip carrier.

Optimum Technology Matching® Applied

▼ GaAs HBT Si BJT GaAs MESFET Si Bi-CMOS ☐ SiGe HBT ☐ Si CMOS

Functional Block Diagram

Package Style: LCC, 16-Pin, 4x4

Features

- Single 3V Supply
- 29dBm Linear Output Power
- 29dB Linear Gain
- 35% Linear Efficiency
- On-board Power Down Mode
- 800MHz to 960MHz Operation

Ordering Information

RF2162 3V 900MHz Linear Amplifier RF2162 PCBA Fully Assembled Evaluation Board

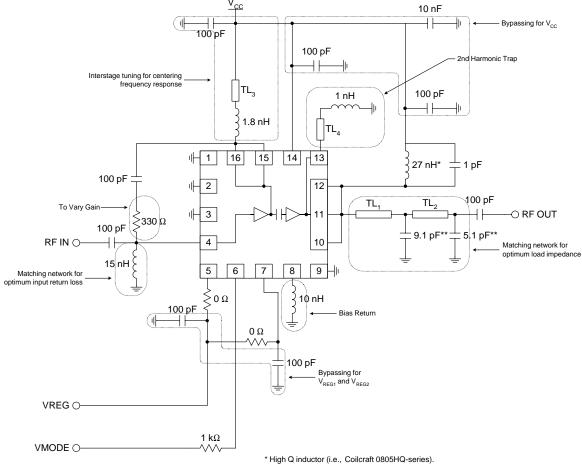
RF Micro Devices, Inc. Tel (336) 664 1233 7628 Thorndike Road Fax (336) 664 0454 Greensboro, NC 27409, USA http://www.rfmd.com

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (RF off)	+8.0	V_{DC}
Supply Voltage (P _{OUT} ≤31dBm)	+4.5	V_{DC}
Mode Voltage (V _{MODE})	+3.0	V_{DC}
Control Voltage (V _{PD})	+3.0	V_{DC}
Input RF Power	+12	dBm
Operating Case Temperature	-30 to +110	°C
Storage Temperature	-30 to +150	°C
Moisture Sensitivity	Modified JEDEC Level 2	

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

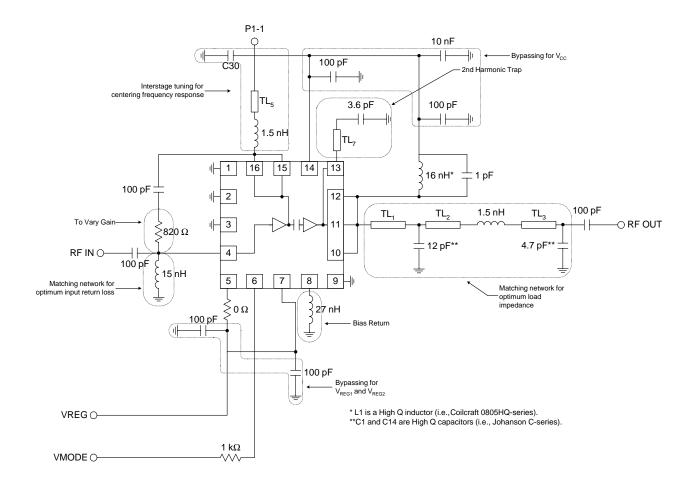
Doromotor	Specification			Unit	Condition		
Parameter	Min. Typ.		Max.	Unit	Condition		
Overall					T=25°C, V _{CC} =3.4V, Freq=824MHz to 849MHz unless otherwise specified		
Usable Frequency Range	800		960	MHz			
Typical Frequency Range		824-849		MHz			
Linear Gain	28	29	31	dB			
Second Harmonic (including second harmonic trap)		-30		dBc			
Max CW Output Power		31.5		dBm			
Total Efficiency (AMPS mode)		50		%			
Maximum Linear Output Power (CDMA Modulation)		29		dBm			
Total Linear Efficiency	30	35		%			
Adjacent Channel Power Rejection		-46	-44	dBc	ACPR @ 885kHz		
		-58	-56	dBc	ACPR @1980kHz		
Noise Power		-90	-89	dBm	V _{CC} =3.4V; BW=30kHz; RX Band NF mea-		
					sure from TX center band to RX center band.		
Maximum Linear Output Power (CDMA Modulation)		29		dBm	V _{CC} =3.0V		
Total Efficiency (AMPS mode)		50		%			
Max CW Output Power	30	30.5	31	dBm			
Total Linear Efficiency	30	36		%			
Adjacent Channel Power Rejection		-46	-44	dBc	ACPR @ 885kHz		
		-58	-56	dBc	ACPR @ 1980kHz		
Input VSWR		<2:1					
Output Load VSWR			10:1		No damage.		
TDMA							
Linear Output Power		30		dBm			
Linear ACP		-29	-28		30kHZ offset		
Linear ALT CP		-49	-48		60kHZ offset		
Efficiency	45	46			O/P=30dBm		
Power Supply							
Power Supply Voltage	3.0	3.4	4.5	V			
Idle Current		135	200	mA	V _{MODE} =0V to 0.5V		
V _{REG} Current		10	15	mA	Total pins 6 and 7, V _{REG} =2.8V		
Turn On/Off time			<100	ns			
Total Current (Power down)			10	μA	V _{PD} =Low		
V _{REG} "Low" Voltage		0	0.2	V			
V _{REG} "High" Voltage	2.7	2.8	2.9	V			
VMODE Bias Control Voltage Range	2.1	0 to 2.5	2.5	V			


2-206 Rev A17 011011

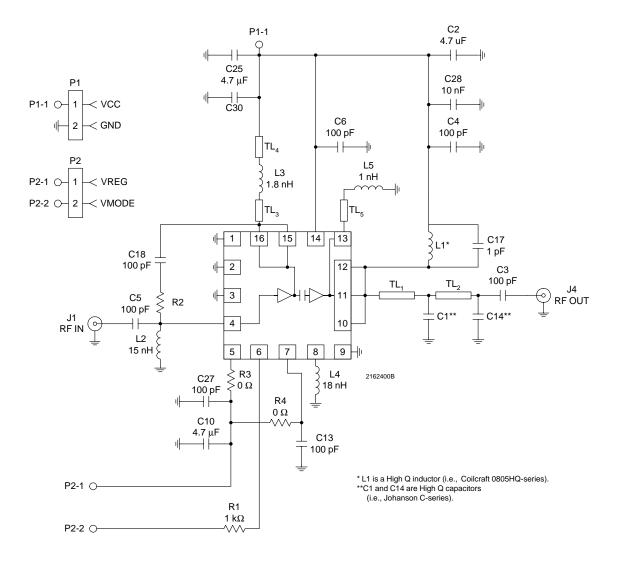
RF2162

Preliminary

Pin	Function	Description	Interface Schematic
1	GND	Ground connection. Connect to package base ground. This ground should be isolated from the backside ground contact on top metal layer.	
2	GND1	Ground for stage 1. Keep traces physically short and connect immediately to ground plane for best performance. This ground should be isolated from the backside ground contact on top metal layer.	
3	GND1	Same as Pin 2.	
4	RF IN	RF input. An external DC blocking capacitor is required if this port is connected to a DC path to ground or a DC voltage.	VCC1 RF IN From Bias = Stages GND1
5	VREG1	Enable voltage for first stage. When this pin is "low", all circuits are shut off. When this pin is 2.8 V, all circuits are operating normally. V _{REG} requires a regulated 2.8 V for the amplifier to operate properly over all specified temperature and voltage ranges. A dropping resistor from a higher regulated voltage may be used to provide the required 2.8 V. A 100 pF high frequency bypass capacitor is recommended.	
6	VMODE	This is an analog bias current control pin. The range is 0V for minimum bias to 3.0 for maximum bias.	
7	VREG2	Enable voltage for second or output stage. When this pin is "low", all circuits are shut off. When this pin is 2.8 V, all circuits are operating normally. V _{REG} requires a regulated 2.8 V for the amplifier to operate properly over all specified temperature and voltage ranges. A dropping resistor from a higher regulated voltage may be used to provide the required 2.8 V. A 100 pF high frequency bypass capacitor is recommended.	
8	GND	Bias circuitry ground. See application schematic.	
9	GND	Ground connection. Connect to package base ground. This ground should be isolated from the backside ground contact on top metal layer.	
10	RF OUT	RF output and power supply for the output stage. The bias for the output stage is provided through this pin and pin 13. An external matching network is required to provide the optimum load impedance; see the application schematics for details.	RF OUT From Bias = Stages
11	RF OUT	Same as pin 10.	See pin 10.
12	RF OUT	Same as pin 10.	
13	2FO	Harmonic trap. This pin connects to the RF output but is used for providing a low impedance to the second harmonic of the operating frequency. An inductor or transmission line resonating with an on chip capacitor at 2fo is required at this pin.	
14	VCC BIAS	Power supply for bias circuitry. A 100pF high frequency bypass capacitor is recommended.	
15	VCC1	Interstage tuning and bias supply for first stage.	
16	VCC1	Interstage tuning and bias supply for first stage.	
Pkg Base	GND	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias. The pad should have a short thermal path to the ground plane.	


Application Schematic - US CDMA

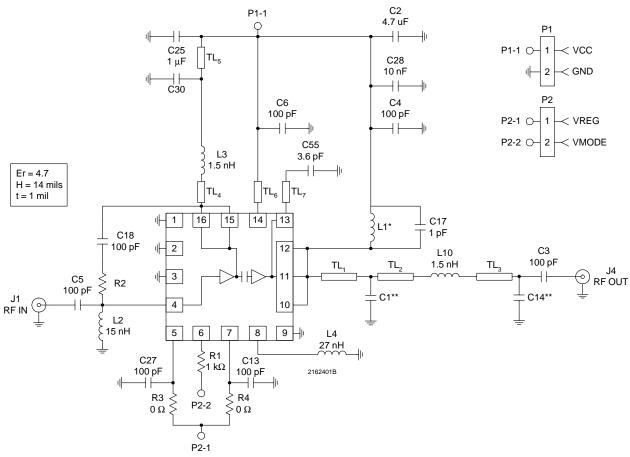
2-208 Rev A17 011011


^{**}High Q capacitors (i.e., Johanson C-series).

Application Schematic - US TDMA

Evaluation Board Schematic - US CDMA

(Download Bill of Materials from www.rfmd.com.)

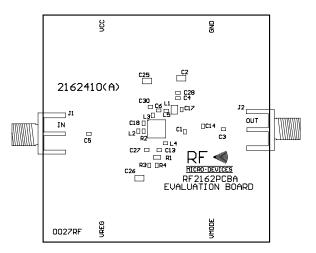


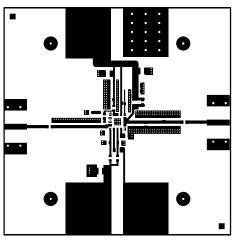
Board	R2 (Ω)	C30 (pF)	C1 (pF)	L1 (nH)	C14 (pF)
CDMA (US)	330	100	9.1	27	5.1

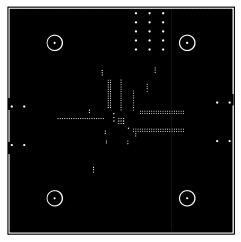
Transmission Line Length	TL ₁	TL_2	TL ₃	TL_4	TL ₅
CDMA (US)	175 mils	165 mils	L=15 mils W=16 mils	L=40-45 mils from L3 W=16 mils	L=15-20 mils W=14 mils

2-210 Rev A17 011011

Evaluation Board Schematic - US TDMA

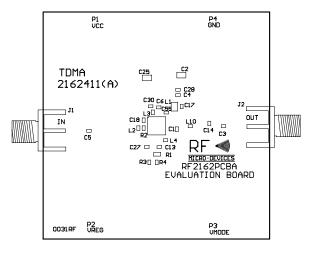

* L1 is a High Q inductor (i.e., Coilcraft 0805HQ-series).
**C1 and C14 are High Q capacitors (i.e., Johanson C-series).

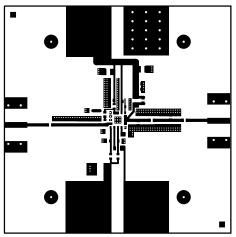

Board	R2 (Ω)	C30 (pF)	C1 (pF)	L1 (nH)	C14 (pF)
TDMA (US)	820	56	12	16	5.6

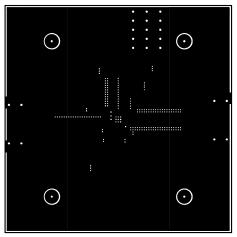

Transmission Line Length	TL ₁	TL ₂	TL_3	TL_4	TL_5	TL_6	TL ₇
TDMA (US)	90 mils	82 mils	135 mils	L=12 mils W=16 mils	L=49 mils W=16 mils	L=12 mils	L=12 mils W=14 mils

Evaluation Board Layout - CDMA Board Size 2.0" x 2.0"

Board Thickness 0.031", Board Material FR-4







2-212 Rev A17 011011

Evaluation Board Layout - TDMA

2

WER AMPLIFIERS

2-214 Rev A17 011011