

General Description

The MAX1910 evaluation (EV) kit is a fully assembled and tested circuit board containing a complete circuit driving four parallel white LEDs. The circuit operates from a 2.7V to 5.3V input supply. A MAX1910 comes installed on the board, but the EV kit can also be used to evaluate the MAX1912.

DESIGNATION	QTY	DESCRIPTION	
C1, C2	2	0.47µF ±10%, 10V X5R ceramic capacitors (0603) Taiyo Yuden LMK107BJ474KA	
C3, C4	2	2.2µF ±10%, 10V X5R ceramic capacitors (0805) Taiyo Yuden LMK212BJ225KG	
R1-R4	4	15Ω ±5% resistors (0805)	
R5, R7	0	Not installed (0805) PC board shorts	
R6	0	Not installed (0805)	
R11	1	$1\Omega \pm 5\%$ resistor (0805)	
R13	1	100k Ω ±5% resistor (0805)	
D1-D4	4	White LEDs (surface mount 3mm x 2mm) Kingbright AA3020PWC, Nichia: NSCW455, or Nichia: NSCW215T	
JU1	1	3-pin header	
U1	1	MAX1910EUB (10-pin µMAX)	
None	1	Shunt	
None	1	MAX1910 EV kit PC board	

Component List

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Kamaya	260-489-1533	www.kamaya.com
Kingbright	888-546-4533	www.kingbright.com
Nichia	248-352-6575	www.nichia.com
Taiyo Yuden	408-573-4150	www.t-yuden.com

Features

- Current-Regulated Charge Pump
- 60mA Output Current
- No Inductor Required
- 750kHz Operation Minimizes Input Ripple
- Uses Small Ceramic Capacitors
- Load Disconnected in Shutdown
- ♦ 1µA Shutdown Current
- Small 10-Pin µMAX Package
- Fully Assembled and Tested

Ordering Information

PART	TEMP RANGE	IC PACKAGE
MAX1910EVKIT	-40°C to +85°C	10 µMAX

_Quick Start

The MAX1910 EV kit is fully assembled and tested. Follow these steps to verify board operation. **Do not turn on the power supply until all connections are completed:**

- 1) Preset the power supply to between 2.7V and 4.2V.
- 2) Verify shunt JU1 is on pins 1 and 2 (enable).
- Connect the positive (+) lead of the power supply to the IN1 pad.
- 4) Connect the negative (-) lead of the power supply to the GND pad.
- 5) Turn on the power supply.
- 6) Verify that the LEDs are lit.
- 7) Vary the power supply from 2.7V to 4.2V.
- To verify shutdown mode, move shunt JU1 to pins 2 and 3. The LEDs turn off.
- 9) Move shunt JU1 back to pins 1 and 2. The LEDs turn back on.

M/IXI/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX1910 Evaluation Kit

Detailed Description

Jumper Selection

Shutdown Mode

The MAX1910 features a shutdown mode that reduces input current to 0.1μ A (typ). Place the shunt across pins 1 and 2 of JU1 for normal operation. Place the shunt across pins 2 and 3 of JU1 for shutdown mode (Table 1).

Table 1. Jumper JU1 Functions

SHUNT LOCATION	SHDN PIN	OUTPUT
1 and 2	Connected to IN	Enabled
2 and 3	Connected to GND	Shutdown

Regulating the Total Current Through LEDs

In the default configuration, the current through LED D4 is set by the resistor R4. The current through the other LEDs tracks the current in the regulated LED. Refer to the MAX1910/MAX1912 data sheet for other LED matching and ballasting configurations.

The EV kit can also be configured to regulate the total current through the LEDs by following these steps:

- 1) Cut the PC board traces that short the pads for R5 and R7.
- 2) Short the pads of R6.
- 3) R5 remains open.
- 4) Install a resistor in R7. R7 sets the sum of all LED currents, and its value is found from:

$$R7 = \frac{0.2}{l_1}$$

Connecting an External Load

To use an external load in place of the four LEDs (such as an LED module), first follow the steps listed in the *Regulating the Total Current Through LEDs* section. Next, remove the four LEDs (D1–D4), or the four ballast resistors (R1–R4). An external load can now be connected from OUT1+ to OUT1-. The current through the external load is regulated to the current set by R7.

Evaluating the MAX1912

To evaluate the MAX1912, carefully remove U1 from the PC board and replace it with the MAX1912. Free samples of the MAX1912 can be obtained from Maxim.

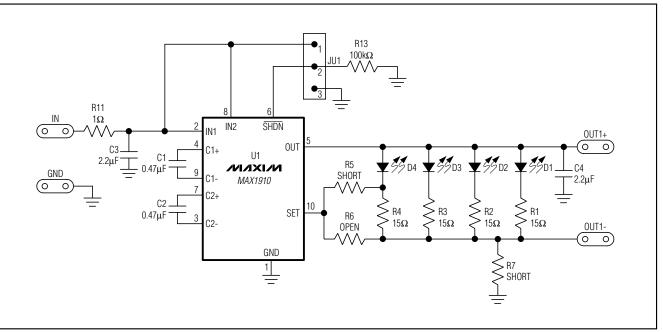


Figure 1. MAX1910 EV Kit Schematic

MAX1910 Evaluation Kit

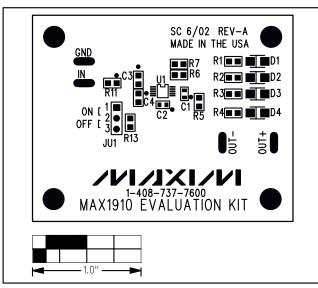


Figure 2. MAX1910 EV Kit Component Placement Guide— Component Side

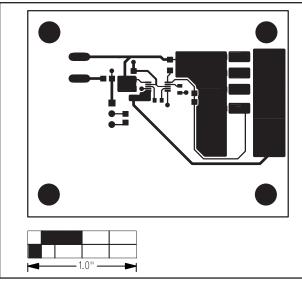


Figure 3. MAX1910 EV Kit PC Board Layout—Component Side

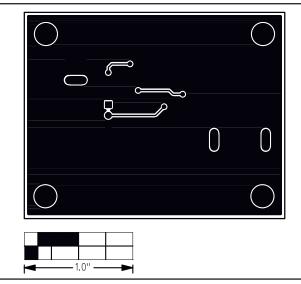


Figure 4. MAX1910 EV Kit PC Board Layout—Solder Side

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _

© 2003 Maxim Integrated Products Printed USA MAXIM is a registered trademark of Maxim Integrated Products.

3