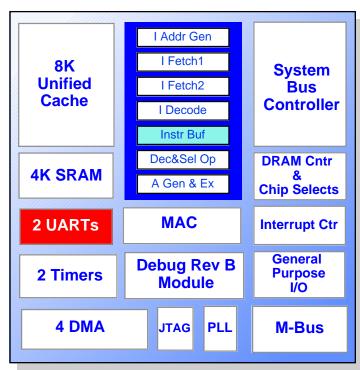


MCF5307 UART MODULE

UART INTERFACE


OVERVIEW

- TWO INDEPENDENT, FULL DUPLEX ASYNCHRONOUS/SYNCHRONOUS RECEIVER/ TRANSMITTER CHANNELS
- INDEPENDENTLY PROGRAMMABLE BAUD RATE GENERATOR FOR EACH RECEIVER AND TRANSMITTER DERIVABLE FROM SYSTEM CLOCK OR EXTERNAL CLOCK ON **TIN** PIN
- PROGRAMMABLE DATA FORMAT, FIVE TO EIGHT DATA BITS PLUS PARITY OR ADDRESS MARK BIT

PARITY OPTIONS:

- 1- ODD PARITY
- 2- EVEN PARITY
- 3- FORCE PARITY
- 4- NO PARITY
- PROGRAMMABLE CHANNEL MODES NORMAL (FULL DUPLEX) AUTOMATIC ECHO (HALF DUPLEX) LOCAL LOOPBACK REMOTE LOOPBACK
- •UART CAN BE PROGRAMMED TO DIRECTLY INTERRUPT DMA FOR FAST TRANSFERS

MCF5307

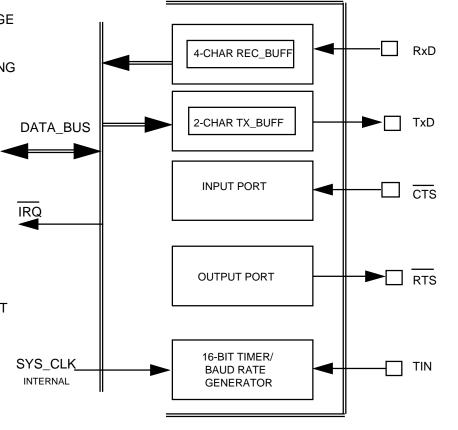
5307 UART Module

UART RECEIVER

FEATURES:

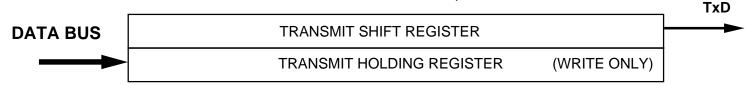
- AUTOMATIC WAKEUP FOR MULTIDROP APPLICATIONS
- FRAMING, PARITY AND OVERRUN ERROR DETECTIONS
- FALSE START BIT DETECTION
- LINE-BREAK DETECTION
- DETECTION OF A BREAK ORIGINATING IN THE MIDDLE OF A CHARACTER
- START/END BREAK INTERRUPT /STATUS
- FOUR STAGE FIFO RECEIVE BUFFER
- RECEIVER OPERATION MAY BE POLLED OR INTERRUPT DRIVEN

UART TRANSMITTER

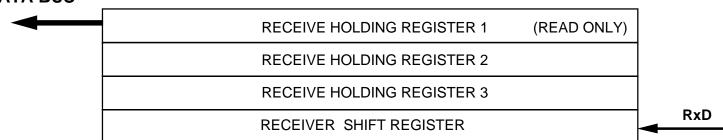

FEATURES:

- DOUBLE-BUFFERED OPERATION
- PARITY GENERATION: ODD, EVEN, NO PARITY OR FORCE PARITY
- STOP BIT GENERATION FROM .563 TO 2-BITS
- BREAK GENERATION
- AUTOMATIC NEGATION OF REQUEST-TO-SEND UPON COMPLETION OF MESSAGE TRANSMISSION
- PROGRAMMABLE CHARACTER LENGTH FROM 5 TO 8-BITS

UART BLOCK DIAGRAM AND INTERFACE SIGNALS


- RxD SERIAL RECEIVE DATA PIN, DATA IS SAMPLED ON RISING EDGE OF CLOCK SOURCE.
- TxD SERIAL TRANSMIT DATA PIN, DATA IS SHIFTED OUT ON FALLING EDGE OF CLOCK SOURCE.
- RTS REQUEST-TO-SEND, THIS PIN MAY BE USED TO CONTROL SERIAL DATA FLOW WHEN CONNECTED TO CTS INPUT PIN OF THE TRANSMITTER.
- CTS CLEAR-TO-SEND, THIS SIGNAL GENERATES
 INTERRUPT REQUEST TO THE CPU UPON CHANGE
 OF STATE.
- SYS_CLK CLOCK INPUT TO BAUD RATE GENERATOR OR 16-BIT TIMER TO GENERATE STANDARD BAUD RATES.
- IRQ AN INTERNAL INTERRUPT REQUEST SIGNAL FROM THE DUART INTERFACE.
- TIN CAN BE USED AS THE CLOCK SOURCE

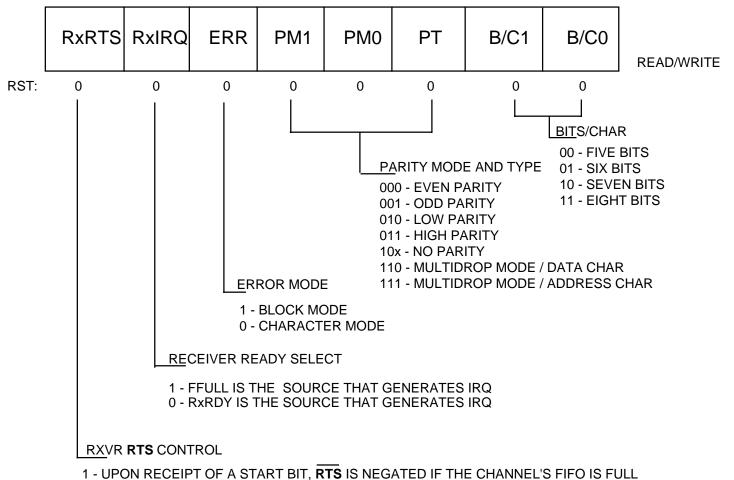
BUFFERED DUART (Rx/Tx Buff)


TRANSMIT BUFFER 1, 2

TxRDY - TRANSMITTER READY FOR A CHAR TO BE WRITTEN INTO HOLDING REGISTER.

TXEMP - TRANSMIT SHIFT REGISTER IS EMPTY.

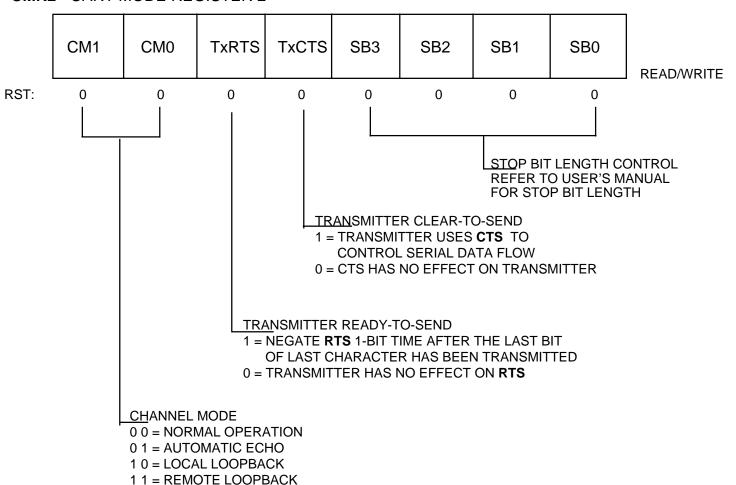
DATA BUS RECEIVE BUFFER 1, 2


RxRDY - RECEIVER READY 1 OR MORE CHAR IN FIFO.

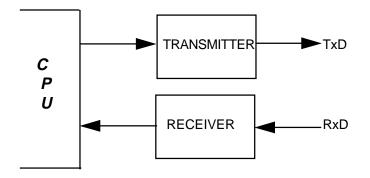
FFULL - FIFO full at 3 bytes.

RECEIVER REGISTERS

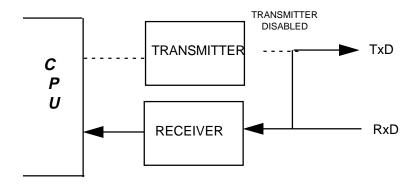
UMR1 - UART MODE REGISTER 1

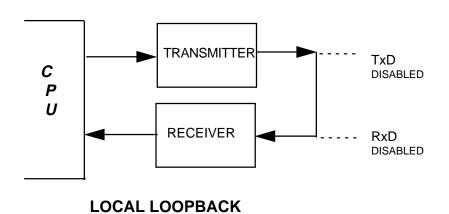


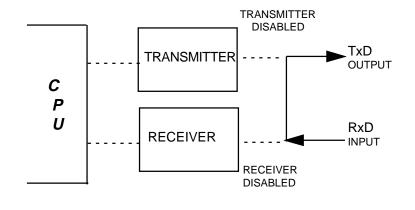
- 0 RECEIVER HAS NO EFFECT ON RTS


UART REGISTERS

UMR2 - UART MODE REGISTER 2




UART MODES



NORMAL OPERATION UMR2(CM1:0) = 00

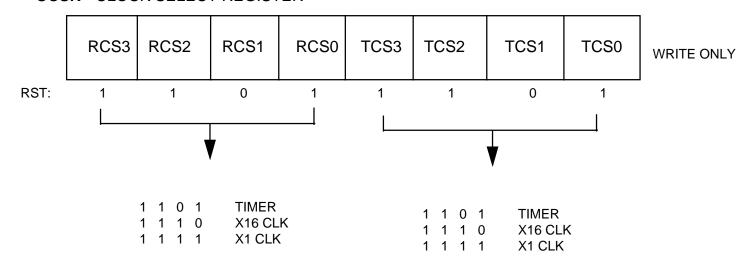
AUTOMATIC ECHO
UMR2(CM1:0) = 01


REMOTE LOOPBACK UMR2(CM1:0) = 11

UMR2(CM1:0) = **10**

RECEIVER/TRANSMITTER STATUS

USR - STATUS REGISTER



5307 UART Module =

BAUD RATE SELECTION

UCSR - CLOCK SELECT REGISTER

RECEIVER BAUD RATE SELECTION

TRANSMITTER BAUD RATE SELECTION

UART COMMANDS

UCR - COMMAND REGISTER

	-	MISC2	MISC1	MISC0	TC1	TC0	RC1	RC0	WRITE ONLY
RST:	0	0	0	0	0	0	0	0	

MISC2	MISC1	MISC0	COMMAND
0	0	0	NO COMMAND
0	0	1	RESET MODE REG PNTR
0	1	0	RESET RECEIVER
0	1	1	RESET TRANSMITTER
1	0	0	RESET ERROR STATUS
1	0	1	RESET BRK CHANGE IRQ
1	1	0	START BREAK
1	1	1	STOP BREAK

MISC COMMANDS

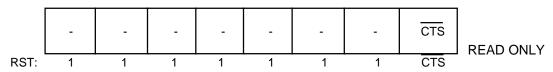
TC1	TC0	COMMAND
0	0	NO COMMAND
0	1	ENABLE TRANSMITTER
1	0	DISABLE TRANSMITTER
1	1	DO NOT USE

TRANSMITTER COMMANDS

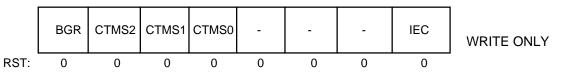
RC1	RC0	COMMAND
0	0	NO COMMAND
0	1	ENABLE RECEIVER
1	0	DISABLE RECEIVER
1	1	DO NOT USE

RECEIVER COMMANDS

UART REGISTERS


UIPCR - INPUT PORT CHANGE REGISTER

COS - WHEN SET INDICATES A LOW-TO-HIGH OR HIGH-TO-LOW TRANSITION LONGER THAN 25-50usec HAS OCCURRED ON INPUT PIN. AN IRQ IS GENERATED TO THE CPU, IF ENABLED


CTS - INDICATES THE CURRENT PIN STATE INPUT

UIP - INPUT PORT REGISTER

CTS - INDICATES THE CURRENT PIN STATE INPUT

UACR - AUXILIARY CONTROL REGISTER

BGR=1, SET 2 OF BAUD RATES IS SELECTED BGR=0, SET 1 OF BAUD RATES IS SELECTED

CTMS[2:0] SHOULD BE SET TO 110

IEC = 1, ENABLE IRQ TO CPU BY A CHANGE OF STATE ON CTS INPUT.

IEC = 0, NO IRQ IS GENERATED TO CPU BECAUSE OF A CHANGE ON CTS

UART REGISTERS

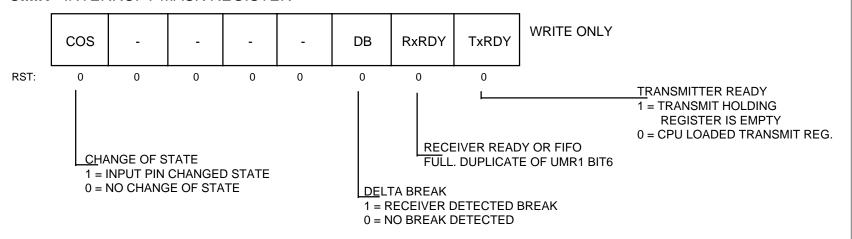
UOP1 - OUTPUT PORT DATA REGISTER

Write a 1 to force RTS low

UOPO - OUTPUT PORT DATA REGISTER

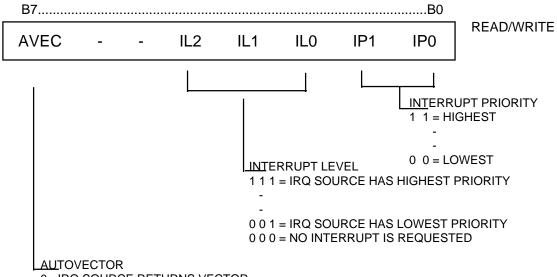
BIT RESET

Write a 1 to force RTS high



INTERRUPT ENABLE & STATUS

UISR - INTERRUPT STATUS REGISTER


UIMR - INTERRUPT MASK REGISTER

UART INTERRUPT CONTROL

ICR 3 & 4- UART INTERRUPT CONTROL REGISTER 3 & 4

- 0 IRQ SOURCE RETURNS VECTOR
- 1 SIM GENERATES AVEC FOR IRQ SOURCE

UIVR - INTERRUPT VECTOR REGISTER

