
Semiconductor Group 07.98, Rel 01

Microcontrollers

ApNote AP1652

Bootstrap Loader Support

on C163-16F Flash Devices (Bx-step)

C163-16F Flash devices have no internal boot ROM and therefore no bootstrap loader
which is needed for in-system programming of virgin Flash in single chip applications. From
design step Bx on C163-16F Flash devices provide a mechanism for switching the reset
vector depending on PORT0 configuration. This application note gives hints and examples
how this feature can be used to achieve bootstrap loader support on C163-16F Flash.

Author : Peter Kliegelhöfer / HL DC AT Microcontroller Application Support

 : Additional file
AP165201.EXE available

Contents Page

Semiconductor Group 2 of 7 AP1652 07.98

Bootstrap Loader Support
on C163-16F Flash Devices (Bx-step)

1 Introduction . 3

2 Pre-programming the internal user Flash. 3

3 Important hint . 4

4 Bootstrap loader activation . 4

5 Bootstrap loader handing. 4

6 Miscellaneous . 5

Appendix . 6
A C163.A66 . 6
B C163.ILO. 7
C C163.BAT . 7

AP1652 ApNote - Revision History

Actual Revision : 07.98 Previous Revision : none (Original version)

Page of
actual Rev.

Page of
prev.Rel.

Semiconductor Group 3 of 7 AP1652 07.98

Bootstrap Loader Support
on C163-16F Flash Devices (Bx-step)

1 Introduction

In general a bootstrap loader is used to load startup code and/ or Flash programming routines from
a remote code source via a serial interface without requiring additional external boot memory.
On most C16x microcontrollers a bootstrap loader code is usually stored in a special internal boot-
ROM (or equivalent non-volatile memory section). However, such a bootstrap loader code memory
is not available on C163-16F.

From design step Bx on C163-16F devices provide a mechanism for switching the reset vector
depending on PORT0 configuration. This feature can be used to achieve bootstrap loader support
on C163-16F Flash. For this it is necessary to pre-program the user Flash with a bootstrap loader
code. On one hand this can be done by the user himself. On the other hand Siemens reserves the
option to deliver pre-programmed C163-16F Flash devices in the future with a special marking text.

This application note gives hints and examples how to prepare C163-16F Flash devices for
bootstrap loader functionality.

2 Pre-programming the internal user Flash

From design step Bx on two different start addresses can be selected after reset when pin EA is
pulled “high”, depending on PORT0 configuration.

The start address is

 00’0000h when P0L.4 is pulled “high” or left open during reset or
 02’0000h when P0L.4 is pulled “low” during reset .

Basically these address areas are covered by internal Flash memory. Single chip mode (= internal
Flash enabled) is entered, when pin EA (external access) is “high” during reset.
Mapping of the physical Flash address 00’0000h to the logical address 00’0000h (which concerns
the lowest 32K block of the internal Flash memory) depends on bit “ROMS1” in register SYSCON.
With ROMS1 = 0 the lowest 32K of internal Flash are mapped to segment 0 (00’0000h...00’7FFFh).
Because the interrupt vector table addresses (which are very important for every user program)
point to the lowest addresses of segment 0, the BSL code must be stored in segment 2.

Since a virgin C163-16F Flash device has no on-chip bootstrap loader, it is necessary to use a
hardware system which enables booting from external memory, for instance the Ertec EVA163
evaluation board or the Phytec C163 starter kit.

In the appendix there is a tested bootstrap loader (BSL163) which can be programmed into the
internal user Flash. In-system programming of on-chip Flash/ OTP memory is supported by the
memory programming tool “Memtool” which is also part of this application note.

Semiconductor Group 4 of 7 AP1652 07.98

Bootstrap Loader Support
on C163-16F Flash Devices (Bx-step)

3 Important hint

Assuming that there is a pre-programmed C163-16F Flash device, already soldered on PCB, well
prepared for in-system programming end-of-line.
• It must be considered that the bootstrap loader code resides unprotected in the internal Flash

memory at location 02’0000H, which is the bottom of Flash sector 2 (figure 1).
• Care has to be taken when erasing or programming the Flash memory. Especially it is

important to know, that there is no way to reboot the C163-16F Flash without external
memory, if sector 2 of the internal Flash memory is erased and there is no valid boot code
in sector 0.

4 Bootstrap loader activation

Pin P0L.4 activates the bootstrap loader by code fetches to location 02’0000H, when “low” during
reset and when pin EA is “high”. The bootstrap loader at this location may then, as in the example
program BSL163, loads the start code into the internal RAM of the C163-16F Flash via the serial
interface ASC0. The main effect of pin P0L.4 beeing “low” during reset is that it changes the reset
value of the code segment pointer CSP from 00H (default) to 02H. In this case the internal program
will be started at 0000H in segment 2, with ROMS1 = ’0’ and EA = ’high” at reset time.
Design step BA is the first step which offers the possibility for switching the reset vector. Therefore
the described bootstrap loader functionality is not implementable on earlier steps (AA, AB). By
default the C163-16F Flash starts fetching code from location 00’0000H, the bootstrap loader is off.

5 Bootstrap loader handling

Because the bootstrap loader resides in the normal accessable Flash memory , there is no protec-
tion against unintentional erase. Furthermore the user has to take care not to erase sector 2 until a
valid and bootable application code has been programmed successfully to sector 0.

A possible „boot flow“ for the C163-16F Flash without external memory could be:

• Booting by pulling P0L.4 “low” and EA = ”high” (selects the bootstrap loader in sector 2 of the
Flash memory),

• Provide 16 words of second level bootstrap code at the serial interface (see file “BSL163” in the
appendix),

• Start of the 16 words out of the internal RAM (done automatically by the bootstrap loader),
• (Probably) loading a third level bootstrap routine via the serial interface into the internal RAM,
• Programming sector 0 of the Flash memory with the desired application program (probably by
 download via the serial interface),
• Reset of the C163-16F Flash by pulling P0L.4 “high” (selects the previously programmed
 code in sector 0 of the Flash memory), test for proper function of the code in sector 0, this code
 should always support program download via the serial interface and execution out of the
 internal RAM,
• Programming of the other sectors of the Flash memory; it is recommended to leave the
 bootstrap loader in sector 2, i.e. to rewrite it in the case that sector 2 has been erased.

Note:
Flash command sequences always must be executed from locations outside the Flash memory.

Semiconductor Group 5 of 7 AP1652 07.98

Bootstrap Loader Support
on C163-16F Flash Devices (Bx-step)

Figure 1
Location of the Bootstrap Loader on C163-16F

The bootstrap loader on C163-16F resides in the Flash memory at address 02’0000H (physical
Flash address 01’0000H) in the case of the example “BSL163” and occupies less than 100 Bytes.

6 Miscellaneous

The acknowledge Byte (ID Byte) of the attached bootstrap loader is „D5H“. It is recommended to
leave the BSL code in Flash sector 2. In his application software the user must reserve this Flash
memory area (address range between 02’0000h and 02’007Fh).
Due to this fact the first address in Flash sector 2 which is freely available for user software is
address 02’0080H. Remember that erase can only be executed sectorwise.

Note:
For further information concerning bootstrap loading please refer to application note AP1607
„Bootstrap Loader C165/ C167“.

Page 11

Page 10

Page 9

Page 8

Page 7

Page 6

Page 5

Page 4

Page 3

Page 2

Page 1

Page 0

S
eg

m
en

t 0
S

eg
m

en
t 1

S
eg

m
en

t 2

00’0000H

00’4000H

00’8000H

00’C000H

01’0000H

01’4000H

01’8000H

01’C000H

02’0000H

02’4000H

02’8000H

02’C000H

02’FFFFH

Sector 1
(32K)

Sector 2
(32K)

Sector 3
(32K)

C163-16F Memory
Configuration 128 KByte Flash Memory

Mapping

Sector 0
(0 - 32 K)

Sector 0
(0 - 32 K)

00’8000H

01’8000H

01’0000H

01’FFFFH

00’0000H

Physical
Flash Address

Sector 3
(96 - 128 K)

Sector 2
(64 - 96 K)

Sector 1
(32 - 64 K)

BSL

Semiconductor Group 6 of 7 AP1652 07.98

Bootstrap Loader Support
on C163-16F Flash Devices (Bx-step)

Appendix A

;--
;# Name: BSL163.A66
;# Version: 1.0
;# Function: C163 Flash Bootstrap Loader
;# Memory: Internal Flash
;# Author: Peter Kliegelhoefer
;# Date: 21.10.1997
;# (C)1997 SIEMENS AG
;--

$segmented

name bsl163

aux section data at0FA40h
RamRoutineStartlabel word
StartAddressds 32
aux ends

SYSRAM DGROUP aux, SYSTEM
ASSUME DPP3:SYSRAM
RBank REGDEF
SSKDEF 1 ; 1 = 0FB00h-0FBFFh

MAINCODE section code
MAINPROC proc TASK

;---
;* Bootstrap Loader: Receives 32 bytes via serial port 0 and stores them *
;* into the internal RAM. Afterwards it performs a jump to the beginning of *
;* the loaded RAM area (0FA40h) and executes the loaded data as a program. *
;---
EndAddress equ StartAddress + 31 ; End Address of RAM Area
Ack_byte equ 0D5h ; Acknowledge Byte of Bootstrap Loader
;---
BSL_INIT: ; don’t load syscon or buscon !

 DISWDT ; disable watchdog timer
 MOV SP,#0FC00h ; set stackpointer
 MOV STKUN,#0FC00h ; set stack underflow pointer
 MOV STKOV,#0FA00h + 6 ; set stack overflow pointer
 MOV CP,#0FC00h ; set registerbank

WaitStartBit:
 JB P3.11,WaitStartBit ; wait for start bit at RXD0
 BSET T6R ; start timer T6

WaitStopBit:
 JNB P3.11,WaitStopBit ; wait for stop bit at RXD0
 BCLR T6R ; stop timer T6
 MOV MDL,T6
 SUB MDL,#36 ; rounding & adjustment
 MOV R1,#72 ; baudrate = (T6 / 72) - 1
 DIVU R1

InitSerialPort:
 MOV S0BG,MDL ; load baudrate generator
 BSET P3.10 ; initialize TXD0 output
 BSET DP3.10
 MOV S0CON,#8001h ; initialize serial port 0:

; 8-bit data, no parity, one stop bit
; receiver not started: single wire option

SendAcknowledge:
 MOV S0TBUF,#Ack_byte ; send acknowledge byte for baudrate check

WaitTransmOver:
 JNB S0TIR,WaitTransmOver ; wait till end of transmission
 BCLR S0TIR ; clear transmit interrupt request flag
 BSET S0REN ; receiver enabled

ReceiveData:

Semiconductor Group 7 of 7 AP1652 07.98

Bootstrap Loader Support
on C163-16F Flash Devices (Bx-step)

 MOV R0,#StartAddress
ReceiveLoop:

 JNB S0RIR,ReceiveLoop ; wait for receive interrupt request
 MOVB [R0],S0RBUF ; store received byte
 BCLR S0RIR ; clear receive interrupt request flag
 CMPI1 R0,#EndAddress ; all bytes received ?
 JMPR CC_NE,ReceiveLoop ; if not, continue loop
 JMPS 0,RamRoutineStart ; yes: jump to RAM routine
 retv ; dummy

MAINPROC endp
MAINCODE ends

 end

Appendix B

;---
;# Name: BSL163.ILO
;# Function: Input Locator File
;# (C)1997 SIEMENS AG
;---

TASK
bsl163.lno
NOVECINIT
NOVECTAB
ad (se(MAINCODE(0020000h)))

Appendix C

@echo off
rem ---
rem Name: BSL163.BAT
rem Function: Batchfile for generating the
rem C163 Flash Bootstrap Loader
rem Toolchain: Tasking tools V5.1
rem (C)1997 SIEMENS AG
rem ---
@echo on

a166 bsl163.a66 nomod166 extend stdnames(reg163.def)
l166 bsl163.obj
l166 @bsl163.ilo to bsl163.out nowa(141)
ihex166 -l16 -i16 -obsl163.hex bsl163.out

