SONY

High Power SP5T Antenna Switch MMIC for GSM/UMTS Dual Mode

CXG1195XR

Description

The CXG1195XR is a SP5T antenna switch for GSM/UMTS applications. The low insertion loss on transmit means increased talk time as the Tx power amplifier can be operated at a lower output level. On chip logic reduces component count and simplifies PCB layout by allowing direct connection of the switch to digital base band control lines with the CMOS logic levels. It requires 3 CMOS control lines. The Sony GaAs JPHEMT MMIC process is used for low insertion loss.

(Applications: GSM/UMTS dual mode handsets)

Features

◆ Insertion loss (Tx): 0.40dB (Typ.) at 34dBm (GSM900) 0.50dB (Typ.) at 32dBm (GSM1800) 0.50dB (Typ.) at 29dBm (UMTS2100)

Package

Small and low height package size: 20-pin XQFN (2.7mm × 2.7mm × 0.35mm (Typ.))

Structure

GaAs JPHEMT MMIC

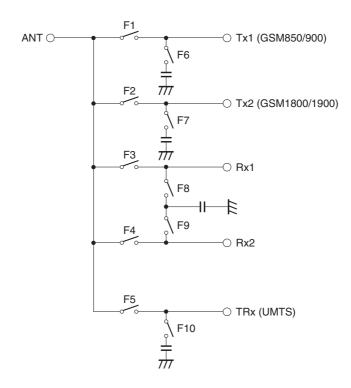
This IC is ESD sensitive device. Special handling precautions are required. The actual ESD test data will be available later.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

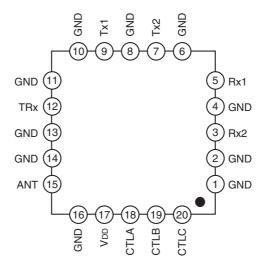
- 1 - E05X14-PS

Absolute Maximum Ratings

(Ta = 25°C)


Bias voltage	Vdd	7	V	
Control voltage	Vctl	5	V	
• Input power max. [Tx1]		35	dBm	(Duty cycle = 12.5 to 50%)
• Input power max. [Tx2]		33	dBm	(Duty cycle = 12.5 to 50%)
• Input power max. [TRx]		32	dBm	
Input power max. [all_Rx]		13	dBm	
 Operating temparature 	Topr	-35 to +85	$^{\circ}$ C	
Storage temperature	Tstg	-65 to +150	$^{\circ}$ C	
Maximum power dissipation	PD	750	mW	

[•] Copper-clad lamination of glass board (4 layers) : 30mm square, t = 0.8mm, FR-4.


Note) Use this product without exceeding the PD value specified in this specification.

If it is used with exceeding the PD value even for a moment, the heat generated by the operation may cause the degradation or breakdown of the product.

Block Diagram

Pin Configuration

Truth Table

State	ON Path	CTLA	CTLB	CTLC	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10
1	ANT – Tx1	Н	Н	L	ON	OFF	OFF	OFF	OFF	OFF	ON	ON	ON	ON
2	ANT – Tx2	Н	L	L	OFF	ON	OFF	OFF	OFF	ON	OFF	ON	ON	ON
3	ANT – Rx1	L	L/H	L	OFF	OFF	ON	OFF	OFF	ON	ON	OFF	ON	ON
4	ANT – Rx2	L	L/H	Н	OFF	OFF	OFF	ON	OFF	ON	ON	ON	OFF	ON
5	ANT – TRx	Н	L	Н	OFF	OFF	OFF	OFF	ON	ON	ON	ON	ON	OFF

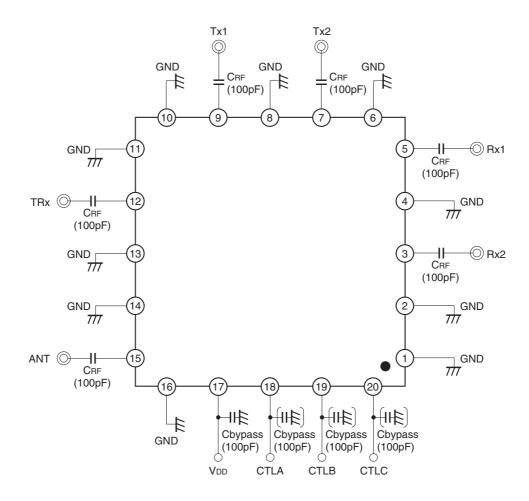
Electrical Characteristics

(Ta = 25°C)

Item	Symbol	Port	Condition	Min.	Тур.	Max.	Unit			
		Tx1 – ANT	*1	_	0.35	0.50	dB			
Insertion loss IL		Tx2 – ANT	*2	_	0.45	0.60	dB			
		TRx (Tx) – ANT	*3	_	0.45	0.60	dB			
	I IL	ANT – Rx1	*4	_	0.5	0.65	dB			
		ANT – Rx2	*5	_	0.65	0.80	dB			
		ANT – TRx (Rx)	*6	_	0.5	0.65	dB			
		Active path: Tx1								
		ANT – Rx1		25		_	dB			
		ANT – Rx2	*1	25		_	dB			
		ANT – Tx2		25		_	dB			
		ANT - TX2	1760 to 1830MHz	25		_	dB			
		ANT – TRx	*1	25		_	dB			
		Active path: Tx2		•			•			
		ANT – Rx1		25			dB			
		ANT – Rx2	*2	25		_	dB			
		ANT – TRx		25		_	dB			
Isolation	ISO.	Active path: TRx								
		ANT – Rx1	*3	25			dB			
		ANT – Rx2		25		_	dB			
		Tx1 – ANT	*1	25		_	dB			
	Tx2 – ANT	*2	25		_	dB				
		Active path: Rx1								
		Tx1 – ANT	*1	20			dB			
		Tx2 – ANT	*2	20		_	dB			
		Active path: Rx2								
		Tx1 – ANT	*1	20			dB			
		Tx2 – ANT	*2	20		_	dB			
VSWR	VSWR				1.2		_			
	2fo	Tv1 ANT	*1	_	– 45	-35	dBm			
	3fo	Tx1 – ANT		—	-35	-30	dBm			
Harmonics	2fo	Tx2 – ANT	*2		-38	-33	dBm			
_	3fo	IAZ – AINI		—	-33	-30	dBm			
	2fo	TRx – ANT	*3	_	-40	-35	dBm			
	3fo			_	-35	-30	dBm			
Control current	Ictl		Vctl = 2.8V	_	20	50	μΑ			
Supply current	IDD		VDD = 2.8V	_	0.2	0.5	mA			
Switching speed	Swt			_	5	10	μS			

CXG1195XR

Note) Electrical Characteristics are measured with all RF ports terminated in 50Ω .


- *1 Power incident on Tx1, Pin = +34dBm (CW), 824 to 915MHz, VDD = 2.8V, Tx1 enabled
- *2 Power incident on Tx2, Pin = +32dBm (CW), 1710 to 1910MHz, VDD = 2.8V, Tx2 enabled
- *3 Power incident on TRx, Pin= +29dBm (CW), 1920 to 1980MHz, VDD = 2.8V, TRx enabled
- ^{*4} Power incident on ANT, Pin = -5dBm, 869 to 894MHz, 925 to 960MHz, VDD = 2.8V, Rx1 enabled
- *5 Power incident on ANT, Pin = -5dBm, 1805 to 1880MHz, 1930 to 1990MHz, VDD = 2.8V, Rx2 enabled
- *6 Power incident on ANT, Pin = -5dBm, 2110 to 2170MHz, VDD = 2.8V, TRx enabled

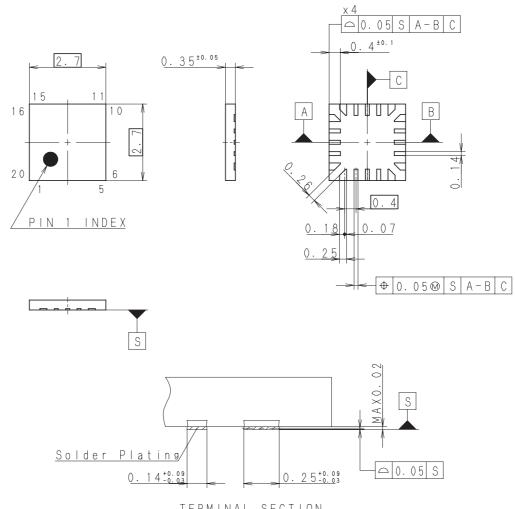
DC Bias Condition

(Ta = 25°C)

Item	Min.	Тур.	Max.	Unit
Vctl (H)	2.0	2.8	3.6	V
Vctl (L)	0	_	0.4	V
VDD	2.6	2.8	3.6	V

Recommended Circuit

When using this IC, the following external components should be used:


CRF: This capacitor is used for RF decoupling and must be used for all applications. 100pF is recommended.

Cbypass: This capacitor is used for DC line filtering. 100pF is recommended.

Package Outline

(Unit: mm)

20PIN XQFN (PLASTIC)

TERMINAL SECTION

Note: Cutting burr of lead are 0.05mm MAX.

SONY CODE	X Q F N - 2 0 P - 0 1
JEITA CODE	
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER ALLOY
PACKAGE MASS	0.019

LEAD PLATING SPECIFICATIONS

ITEM	SPEC.
LEAD MATERIAL	COPPER ALLOY
SOLDER COMPOSITION	Sn-Bi Bi:1-4wt%
PLATING THICKNESS	5-18µm