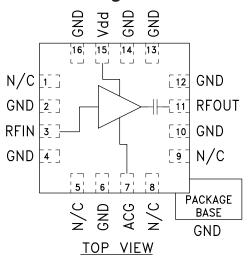


HMC372LP3


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 700 - 1000 MHz

Typical Applications

The HMC372LP3 is ideal for basestation receivers:

- GSM, GPRS & EDGE
- CDMA & W-CDMA
- Private Land Mobile Radio

Functional Diagram

Features

Noise Figure: <1.0 dB +34 dBm Output IP3

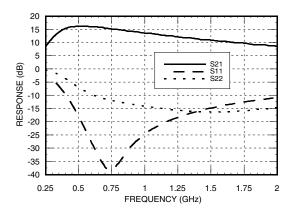
Gain: 15 dB

Very Stable Gain vs. Supply & Temperature

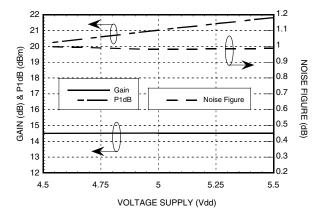
Single Supply: +5.0 V @ 100 mA

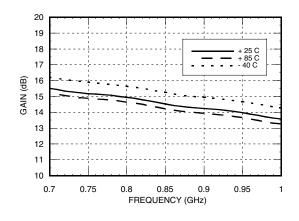
50 Ohm Matched Output

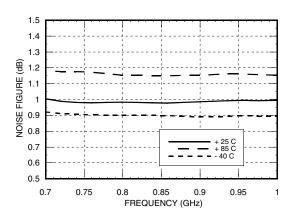
General Description

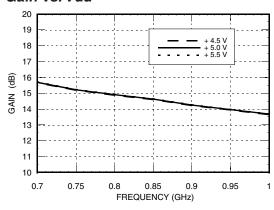

The HMC372LP3 is a GaAs PHEMT MMIC Low Noise Amplifier that is ideal for GSM & CDMA cellular basestation front-end receivers operating between 700 and 1000 MHz. The amplifier has been optimized to provide 1.0 dB noise figure, 15 dB gain and +34 dBm output IP3 from a single supply of +5.0V @ 100 mA. Input and output return losses are 25 and 14 dB respectively with the LNA requiring only four external components to optimize the RF Input match, RF ground and DC bias. The HMC372LP3 shares the same package and pinout with the HMC356LP3 high IP3 LNA. A low cost, leadless 3x3 mm (LP3) SMT QFN package houses the low noise amplifier.

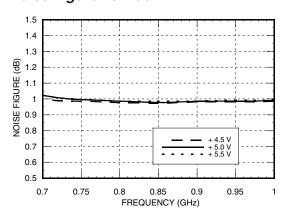
Electrical Specifications, $T_A = +25^{\circ} C$, Vs = +5V


Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Frequency Range		810 - 960 700 - 1000			MHz		
Gain	12.5	14.5		11.5	14.5		dB
Gain Variation Over Temperature		0.008	0.015		0.008	0.015	dB / °C
Noise Figure		1.0	1.3		1.0	1.3	dB
Input Return Loss		25			25		dB
Output Return Loss		14			12		dB
Reverse Isolation		20			22		dB
Output Power for 1dB Compression (P1dB)	18	21		17	20		dBm
Saturated Output Power (Psat)		23.5			22.5		dBm
Output Third Order Intercept (IP3) (-20 dBm Input Power per tone, 1 MHz tone spacing)		34		30	33		dBm
Supply Current (Idd)		100			100		mA

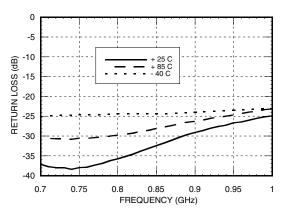

Broadband Gain & Return Loss


Gain, Noise Figure & Power vs. Supply Voltage @ 850MHz

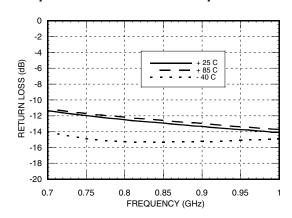

Gain vs. Temperature

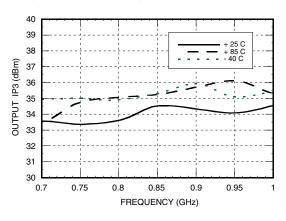

Noise Figure vs. Temperature

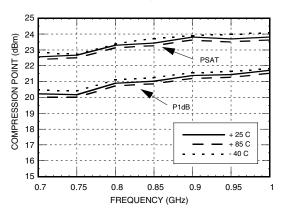
Gain vs. Vdd

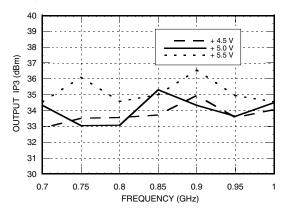


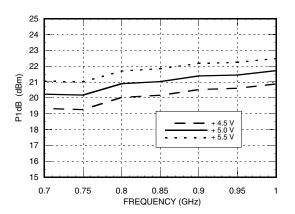
Noise Figure vs. Vdd



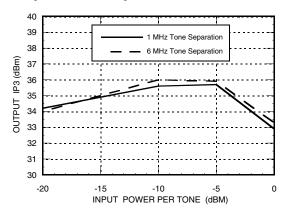

Input Return Loss vs. Temperature


Output Return Loss vs. Temperature

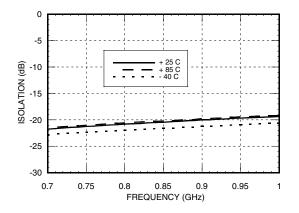

Output IP3 vs. Temperature


P1dB & Psat vs. Temperature

Output IP3 vs. Vdd



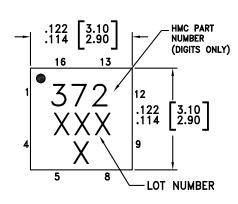
P1dB vs. Vdd

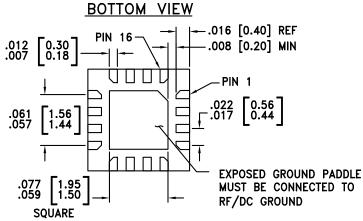


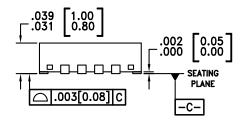
Output IP3 vs. Input Power @ 950 MHz

Reverse Isolation vs. Temperature

Absolute Maximum Ratings


Drain Bias Voltage (Vdd)	+8.0 Vdc
RF Input Power (RFin)(Vs = +5.0 Vdc)	+15 dBm
Channel Temperature	150 °C
Continuous Pdiss (T = 85 °C) (derate 15.6 mW/°C above 85 °C)	1.015 W
Thermal Resistance (channel to ground paddle)	64.1 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

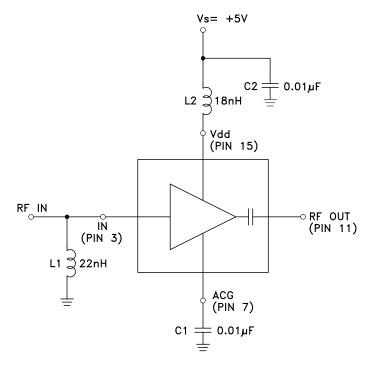

Typical Supply Current vs. Vdd


Vdd (Vdc)	Idd (mA)
+4.5	98
+5.0	100
+5.5	102

Outline Drawing

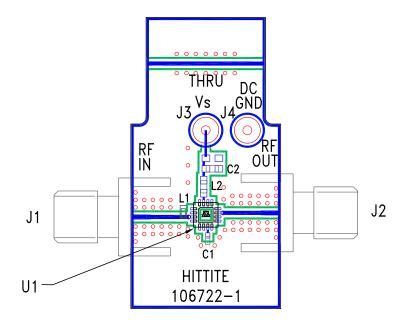
NOTES:

- MATERIAL PACKAGE BODY: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY
- 3. LEAD AND GROUND PADDLE PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 6. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 7. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN



Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 5, 8, 9	N/C	No connection necessary. These pins may be connected to RF/DC ground.	
2, 4, 6, 10, 12, 13, 14, 16	GND	These pins must be connected to RF/DC ground.	=
3	RF IN	This pin is matched to 50 Ohms with a 22 nH inductor to ground. See Application Circuit.	RFIN O
7	ACG	AC Ground - An external capacitor of 0.01μF to ground is required for low frequency bypassing. See Application Circuit for further details.	Vdd O ACG
11	RF OUT	This pin is AC coupled and matched to 50 Ohms.	RFOUT
15	Vdd	Power supply voltage. Choke inductor and bypass capacitor are required. See application circuit.	Vdd ACG


Application Circuit

Note 1: Choose value of capacitor C1 for low frequency bypassing. A 0.01 μ F $\pm 10\%$ capacitor is recommended. Note 2: L1, L2 and C1 should be located as close to the pins as possible.

Evaluation PCB

List of Material

Item	Description	
J1 - J2	PC Mount SMA RF Connector	
J3 - J4	DC Pin	
C1	10000 pF Capacitor, 0402 Pkg.	
C2	10000 pF Capacitor, 0060 Pkg.	
L1	22nH Inductor, 0402 Pkg.	
L2	18nH Inductor, 0603 Pkg.	
U1	HMC372LP3 Amplifier	
PCB*	106722 Eval Board	
* Circuit Board Material: Rogers 4350		

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of VIA holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.