

STK4036XI

AF Power Amplifier (Split Power Supply) (50W min, THD = 0.008%)

Features

- · Compact packaging supports slimmer set designs
- Series designed from 50 up to 150 W and pincompatibility
- Simpler heat sink design facilitates thermal design of slim stereo sets
- Current mirror circuit, cascade circuit and purecomplimentary circuit application reduce distortion to 0.008 %
- Supports addition of electronic circuits for thermal shutdown and load-short protection circuit as well as pop noise muting which occurs when the power supply switch is turned on and off.

Package Dimensions

unit: mm

4075

Specifications

Maximum Ratings at Ta = 25°C

Parameter	Symbol	Condition	Rating	Unit
Maximum supply voltage	V _{CC} max		± 53.5	V
Thermal resistance	θj-c		1.8	°C/W
Junction temperature	Tj		150	°C
Operating substrate temperature	Tc		125	°C
Storage temperature	Tstg		-30 to +125	°C
Available time for load shorted	t _s *1	$V_{CC} = \pm 37 \text{ V}, R_1 = 8 \Omega, f = 50 \text{ Hz}, P_O = 50 \text{ W}$. 1	s

Recommended Operational Conditions at Ta = 25°C

Parameter	Symbol	Condition	Rating	Unit
Recommended supply voltage	Vcc		± 37	V
Load resistance	RL		8	Ω

SANYO Electric Co.,Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

N3096HA (OT)/O2093YO 5-2188 No. 4620-1/5

146

3797076 0020687 96T 🞟

Operating Characteristics

at Ta = 25°C, V_{CC} = \pm 37 V, R_L = 8 Ω , VG = 40 dB, Rg = 600 Ω , 100 k LPF ON, R_L (non-inductive)

Parameter		Condition	Rating			
	Symbol		min	typ	max	Unit
Quiescent current	lcco	V _{CC} = ± 44.5 V	15		120	mA
Output power	Po	THD = 0.008 %, f = 20 Hz to 20 kHz	50			W
Total harmonic distortion	THD	P _O = 1.0 W, f = 1 kHz			0.008	%
Frequency response	fL, fH	$P_0 = 1.0 \text{ W}, + 0 \text{ dB}$		20 to 50k		Hz
Input resistance	ri	P _O = 1.0 W, f = 1 kHz		55		kΩ
Output noise voltage	V _{NO} *2	V _{CC} = ± 44.5 V, Rg = 10 kΩ			1.2	mVrms
Neutral voltage	V _N	V _{CC} = ± 44.5 V	-70	0	+ 70	m∨

Note: Use rated power supply for test unless otherwise specified.

*1 When measuring permissible load short time and output noise voltage use transformer power supply indicated below.

^{*2} Output noise voltage represents the peak value on the rms scale (VTVM). The noise voltage waveform does not include the pulse noise.

Specified Transformer Power Supply (MG-200 Equivalent)

Equivalent Circuit

Application Circuit: 50W min Single Channel AF Power Amplifier

Sample Printed Circuit Pattern for Application Circuit (Copper-foiled side)

Unit (resistance: Ω , capacitance: F)

Description of External Parts

R₁, C₁ : Input filter circuit

• Reduces high-frequency noise.

C₂: Input coupling capacitor

 DC current suppression. A reduction in reactance is effective because of increases in capacitor reactance at low frequencies and 1/f noise dependence on signal source resistance which result in output noise worsening.

C₃ : AC NF capacitor R₄, R₅ : Used for VG setting.

R₂: Input bias resistor

· Biases the input pin to zero.

• Effects V_N stability (refer to NF circuit).

• Due to differential input, input resistance is more or less determined by this resistance value.

R₄, R₅ : NFB circuit (AC NF circuit). Use of resistor with 1% error is suggested. C₃ (R₂)

• VG settings are obtained using R₄ and R₅ according to the following equation:

 $\log_{20} \frac{R_5}{R_4}$ 40 dB is recommended.

• Low-frequency cutoff frequency settings are obtained using R₄ and C₃ according to the following equation:

$$f_L = \frac{1}{2\pi \cdot R_4 \cdot C_3} \quad [Hz]$$

When changing the VG setting, you should change R_4 which requires a recheck of the low cutoff frequency setting. When the VG setting is changed using R_5 , the setting should ensure R_2 equals R_5 so that V_N balance stability is maintained. If the resistor value is increased more than the existing value, V_N balance may be disturbed and result in deterioration of V_N temperature characteristics.

R₃: Differential constant-current bias resistor

R₆, R₇ : For oscillation suppression and phase compensation applications

(For use with differential stage applications)

R₇, C₄: For oscillation suppression and phase compensation applications

(A Mylar capacitor is recommended for C₄ for use with output stage applications)

C₆, C₉: For oscillation suppression and phase compensation applications

Power stage (Must be connected near the pin) C₆: Positive (+) power C₉: Negative (-) power

C₈: For oscillation suppression and phase compensation applications

(Oscillation suppression before power step clip)

C₅: For oscillation suppression and distortion improvement applications

 R_8, C_{10} : Ripple filter circuit on positive (+) side. R_9, C_{13} : Ripple filter circuit on negative (-) side. C_{11}, C_{12} : For oscillation suppression applications

• Used for reducing power supply impedance to stable IC operation and should be connected near the IC

pin. We recommend that you use an electrolytic capacitor.

R₁₀ : Output resistor
Increases load shorting endurance capacity during times of high output.